- -

Effect of different high surface area silicas on the rheology of cement paste

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of different high surface area silicas on the rheology of cement paste

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tobón, J.I. es_ES
dc.contributor.author Mendoza, O. es_ES
dc.contributor.author Restrepo, O.J. es_ES
dc.contributor.author Borrachero Rosado, María Victoria es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.date.accessioned 2021-05-28T03:33:01Z
dc.date.available 2021-05-28T03:33:01Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 0465-2746 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166902
dc.description.abstract [ES] Efecto de diferentes sílices de alta área superficial sobre la reología de pastas de cemento. Este tra¬bajo estudia el efecto de la nanosílice (NS) sobre la reología de pastas de cemento por comparación con sílices de alta área superficial: humo de sílice (SF) y pirosílice (PS). Las pastas fueron fabricadas con diferentes rela¬ciones agua-material cementante y sustituciones sólidas de sílice. Fueron ejecutados ensayos de demanda de agua, tiempo de fraguado y reología. Se encontró que la NS y SF disminuyen la viscosidad plástica, mientras que la PS la aumenta. Solo la PS tuvo efecto sobre el límite elástico. La NS presentó mayor disminución de la viscosidad, independientemente de su alta demanda de agua. Se concluyó que el comportamiento de las pastas con NS y SF es gobernado por el efecto de ¿rodamiento¿ de la sílice, por su grado de aglomeración y por su impacto en la fracción de sólidos. El comportamiento de las pastas con PS es gobernado por su capacidad de absorber agua. es_ES
dc.description.abstract [EN] This work studies the effect of nanosilica (NS) on the rheology of cement paste by comparing it with two high specific surface area silicas: silica fume (SF) and pyrogenic silica (PS). Portland cement pastes were produced with different water-to-cementing material ratios and different solid substitutions of cement by silica. Water demand, setting time, and rheology tests were performed. Results showed that NS and SF decreased plastic viscosity, while PS increased it. Only PS was found to have an effect on yield stress. NS showed the most decreasing effect on viscosity, regardless of its higher water demand. It was concluded that the behavior of pastes containing NS and SF is governed by the "ball-bearing" effect from silica particles, by their agglomeration degree, and their impact on the solid volume fraction. The behavior of pastes containing PS is governed by its ability to absorb a portion of the mixing water. es_ES
dc.language Inglés es_ES
dc.publisher Departmento de Publicaciones del CSIC es_ES
dc.relation.ispartof Materiales de Construcción es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Rheology es_ES
dc.subject Workability es_ES
dc.subject Superficial area es_ES
dc.subject Pozzolan es_ES
dc.subject Cement paste es_ES
dc.subject Reología es_ES
dc.subject Trabajabilidad es_ES
dc.subject Área superficial es_ES
dc.subject Puzolana, Pasta de cemento es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Effect of different high surface area silicas on the rheology of cement paste es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3989/mc.2020.15719 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Tobón, J.; Mendoza, O.; Restrepo, O.; Borrachero Rosado, MV.; Paya Bernabeu, JJ. (2020). Effect of different high surface area silicas on the rheology of cement paste. Materiales de Construcción. 70(340):1-9. https://doi.org/10.3989/mc.2020.15719 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3989/mc.2020.15719 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 70 es_ES
dc.description.issue 340 es_ES
dc.relation.pasarela S\430873 es_ES
dc.description.references 1. Kwan, A.K.H.; Li, Y. (2013) Effects of fly ash microsphere on rheology, adhesiveness and strength of mortar. Constr. Build. Mater. 42, 137-145. es_ES
dc.description.references 2. Jal, P.K.; Sudarshan, M.; Saha, A.; Patel, S.; Mishra, B.K. (2004) Synthesis and characterization of nanosilica prepared by precipitation method. Coll. Surf. A Physicochem. Eng. Asp. 240 [1-3], 173-178. es_ES
dc.description.references 3. El Sokkary, T. M.; Assal, H. H.; Kandeel, A. M. (2004) Effect of silica fume or granulated slag on sulphate attack of ordinary portland and alumina cement blend. Ceram. Int. 30 [2], 133-138. es_ES
dc.description.references 4. Gutsch, A.; Krämer, M.; Michael, G.; Mühlenweg, H.; Pridöhl, M.; Zimmermann, G. (2002) Gas-Phase production of nanoparticles. KONA Powder Part. J. 20, 24-37. es_ES
dc.description.references 5. Singh, L.P.; Karade, S.R.; Bhattacharyya, S.K.; Yousuf, M.M.; Ahalawat, S. (2013) Beneficial role of nanosilica in cement based materials - A review. Constr. Build. Mater. 47, 1069-1077. es_ES
dc.description.references 6. Björnström, J.; Martinelli, A.; Börjesson, L.; Panas, I.; (2004) Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement. Chem. Phys. Lett. 392 [1-3], 242-248. es_ES
dc.description.references 7. Mendoza Reales, O.A.; Silva, E.C.C.M.; Paiva, M.D.M.; M.; Duda, P.; Toledo Filho, R.D. (2017) The role of surface area and compacity of nanoparticles on the rheology of cement paste 25.3. ACI Symp. Pub. 320, 25.1-25.14. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/51701063. es_ES
dc.description.references 8. Tobón, J. I.; Mendoza Reales, O.; Retrepo, O.J.; Borrachero, M.V. (2018) Effect of pyrogenic silica and nanosilica on Portland cement matrices. J. Mater. Civ. Eng. 30 [10], 1-10. es_ES
dc.description.references 9. Mehdipour, I.; Khayat, K.H. (2018) Understanding the role of particle packing characteristics in rheo-physical properties of cementitious suspensions: A literature review. Constr. Build. Mater. 161, 340-353. es_ES
dc.description.references 10. Boukendakdji, O.; Kadri, E.H.; Kenai, S. (2012) Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of selfcompacting concrete. Cem. Concr. Compos. 34 [4], 583-590. es_ES
dc.description.references 11. Park, C.K.; Noh, M.H.; Park, T.H. (2005) Rheological properties of cementitious materials containing mineral admixtures. Cem. Concr. Res. 35 [5], 842-849. es_ES
dc.description.references 12. Deng, H.; Li, H. (2018) Assessment of self-sensing capability of carbon black engineered cementitious composites. Constr. Build. Mater. 173, 1-9. es_ES
dc.description.references 13. Mendoza-Reales, O.A.; Arias Jaramillo, Y.P.; Ochoa Botero, J.C.; Delgado, C.A.; Quintero, J.H.; Toledo Filho, R.D. (2018) Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes. Cem. Concr. Res. 107, 101-109. es_ES
dc.description.references 14. Quercia, G.; Hüsken, G.; Brouwers, H.J.H. (2012) Water demand of amorphous nano silica and its impact on the workability of cement paste. Cem. Concr. Res. 42 [2], 344-357. es_ES
dc.description.references 15. Norhasri, M.S.M.; Hamidah, M.S.; Fadzil, A.M. (2017) Applications of using nano material in concrete: A review. Constr. Build. Mater. 133, 91-97. es_ES
dc.description.references 16. Bowen, P. (2002). Particle size distribution measurement from millimeters to nanometers and from rods to platelets. J. Dispers. Sci. Technol. 23 [5], 631-662. es_ES
dc.description.references 17. Staiger, M.; Bowen, P.; Ketterer, J.; Bohonek, J. (2002) Particle size distribution measurement and assessment of agglomeration of commercial nanosized ceramic particles. J. Dispers. Sci. Technol. 23 [5], 619-630. es_ES
dc.description.references 18. Hidalgo, A.; Petit, S.; Domingo, C.; Alonso, C.; Andrade, C. (2007) Microstructural characterization of leaching effects in cement pastes due to neutralisation of their alkaline nature. Part I: Portland cement pastes. Cem. Concr. Res. 37 [1], 63-70. es_ES
dc.description.references 19. Srinivasan, S.; Barbhuiya, S.A.; Charan, D.; Pandey, S.P. (2010) Characterising cement-superplasticiser interaction using zeta potential measurements. Constr. Build. Mater. 24 [12], 2517-2521. es_ES
dc.description.references 20. de Larrard, F. (1999) Concrete mixture proportioning a scientific approach, E. & F.N. Spon, London. es_ES
dc.description.references 21. Banfill, P.F.G. (2006) Rheology of fresh cement and concrete. Rheol. Reviews 2006. 61-130. es_ES
dc.description.references 22. Burneau, A.; Barres, O.; Gallas, J.P.; Lavalley, J.C. (1990) Comparative Study of the Surface Hydroxyl Groups of Fumed and Precipitated Silicas. 2. Chatracterization by infrared spectroscopy of the interacctions with water. Langmuir. 6 [8], 1364-1372. es_ES
dc.description.references 23. Xie, X-L.; Liu, Q-X.; Li, R.K-Y.; Zhou, X-P.; Zhang, Q-X.; Yu, Z-Z.; Mai, Y-W. (2004) Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer. 45 [19], 6665-6673. es_ES
dc.description.references 24. Asavapisit, S.; Fowler, G.; Cheeseman, C.R. (1997) Solution chemistry during cement hydration in the presence of metal hydroxide wastes. Cem. Concr. Res. 27 [8], 1249-1260. es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem