- -

Modelling Type 1 and 2 Wind Turbines based on IEC 61400-27-1: Transient Response under Voltage Dips

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelling Type 1 and 2 Wind Turbines based on IEC 61400-27-1: Transient Response under Voltage Dips

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Sánchez, Tania María es_ES
dc.contributor.author Muñoz-Benavente, Irene es_ES
dc.contributor.author Gómez-Lázaro, Emilio es_ES
dc.contributor.author Fernández-Guillamón, Ana es_ES
dc.date.accessioned 2021-06-08T03:31:40Z
dc.date.available 2021-06-08T03:31:40Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167460
dc.description.abstract [EN] Wind power plants depend greatly on weather conditions, thus being considered intermittent, uncertain and non-dispatchable. Due to the massive integration of this energy resource in the recent decades, it is important that transmission and distribution system operators are able to model their electrical behaviour in terms of steady-state power flow, transient dynamic stability, and short-circuit currents. Consequently, in 2015, the International Electrotechnical Commission published Standard IEC 61400-27-1, which includes generic models for wind power generation in order to estimate the electrical characteristics of wind turbines at the connection point. This paper presents, describes and details the models for wind turbine topologies Types 1 and 2 following IEC 61400-27-1 for electrical simulation purposes, including the values for the parameters for the different subsystems. A hardware-in-the-loop combined with a real-time simulator is also used to analyse the response of such wind turbine topologies under voltage dips. The evolution of active and reactive powers is discussed, together with the wind turbine rotor and generator rotational speeds. es_ES
dc.description.sponsorship This work was partially supported by the Spanish Ministry of Economy and Competitiveness and the European Union -FEDER Funds, ENE2016-78214-C2-1-R-; and the Spanish Ministry of Education, Culture and Sports -ref. FPU16/04282-. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject IEC 61400-27 es_ES
dc.subject Power system stability es_ES
dc.subject Generic model es_ES
dc.subject Wind turbine es_ES
dc.subject Voltage dip es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Modelling Type 1 and 2 Wind Turbines based on IEC 61400-27-1: Transient Response under Voltage Dips es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en13164078 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2016-78214-C2-2-R/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU16%2F04282/ES/FPU16%2F04282/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation García-Sánchez, TM.; Muñoz-Benavente, I.; Gómez-Lázaro, E.; Fernández-Guillamón, A. (2020). Modelling Type 1 and 2 Wind Turbines based on IEC 61400-27-1: Transient Response under Voltage Dips. Energies. 13(16):1-19. https://doi.org/10.3390/en13164078 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en13164078 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 16 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\418611 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Fernández-Guillamón, A., Villena-Lapaz, J., Vigueras-Rodríguez, A., García-Sánchez, T., & Molina-García, Á. (2018). An Adaptive Frequency Strategy for Variable Speed Wind Turbines: Application to High Wind Integration Into Power Systems. Energies, 11(6), 1436. doi:10.3390/en11061436 es_ES
dc.description.references Fernández-Guillamón, A., Das, K., Cutululis, N. A., & Molina-García, Á. (2019). Offshore Wind Power Integration into Future Power Systems: Overview and Trends. Journal of Marine Science and Engineering, 7(11), 399. doi:10.3390/jmse7110399 es_ES
dc.description.references Fernández-Guillamón, A., Gómez-Lázaro, E., Muljadi, E., & Molina-García, Á. (2019). Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time. Renewable and Sustainable Energy Reviews, 115, 109369. doi:10.1016/j.rser.2019.109369 es_ES
dc.description.references Cardozo, C., van Ackooij, W., & Capely, L. (2018). Cutting plane approaches for frequency constrained economic dispatch problems. Electric Power Systems Research, 156, 54-63. doi:10.1016/j.epsr.2017.11.001 es_ES
dc.description.references Fernández-Guillamón, A., Martínez-Lucas, G., Molina-García, Á., & Sarasua, J. I. (2020). An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation. Energies, 13(13), 3369. doi:10.3390/en13133369 es_ES
dc.description.references Global Wind Report 2019https://gwec.net/global-wind-report-2019/ es_ES
dc.description.references Muñoz-Benavente, I., Hansen, A. D., Gómez-Lázaro, E., García-Sánchez, T., Fernández-Guillamón, A., & Molina-García, Á. (2019). Impact of Combined Demand-Response and Wind Power Plant Participation in Frequency Control for Multi-Area Power Systems. Energies, 12(9), 1687. doi:10.3390/en12091687 es_ES
dc.description.references Villena-Ruiz, R., Lorenzo-Bonache, A., Honrubia-Escribano, A., Jiménez-Buendía, F., & Gómez-Lázaro, E. (2019). Implementation of IEC 61400-27-1 Type 3 Model: Performance Analysis under Different Modeling Approaches. Energies, 12(14), 2690. doi:10.3390/en12142690 es_ES
dc.description.references Kumar, D., & Chatterjee, K. (2016). A review of conventional and advanced MPPT algorithms for wind energy systems. Renewable and Sustainable Energy Reviews, 55, 957-970. doi:10.1016/j.rser.2015.11.013 es_ES
dc.description.references Hansen, A. D., Iov, F., Blaabjerg, F., & Hansen, L. H. (2004). Review of Contemporary Wind Turbine Concepts and Their Market Penetration. Wind Engineering, 28(3), 247-263. doi:10.1260/0309524041590099 es_ES
dc.description.references Liang, X. (2017). Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources. IEEE Transactions on Industry Applications, 53(2), 855-866. doi:10.1109/tia.2016.2626253 es_ES
dc.description.references Calif, R., & Schmitt, F. G. (2014). Multiscaling and joint multiscaling description of the atmospheric wind speed and the aggregate power output from a wind farm. Nonlinear Processes in Geophysics, 21(2), 379-392. doi:10.5194/npg-21-379-2014 es_ES
dc.description.references Calif, R., Schmitt, F. G., & Huang, Y. (2013). Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis. Physica A: Statistical Mechanics and its Applications, 392(18), 4106-4120. doi:10.1016/j.physa.2013.04.038 es_ES
dc.description.references Fernández‐Guillamón, A., Vigueras‐Rodríguez, A., & Molina‐García, Á. (2019). Analysis of power system inertia estimation in high wind power plant integration scenarios. IET Renewable Power Generation, 13(15), 2807-2816. doi:10.1049/iet-rpg.2019.0220 es_ES
dc.description.references Heredia, F.-J., Cuadrado, M. D., & Corchero, C. (2018). On optimal participation in the electricity markets of wind power plants with battery energy storage systems. Computers & Operations Research, 96, 316-329. doi:10.1016/j.cor.2018.03.004 es_ES
dc.description.references Zhang, W., & Fang, K. (2017). Controlling active power of wind farms to participate in load frequency control of power systems. IET Generation, Transmission & Distribution, 11(9), 2194-2203. doi:10.1049/iet-gtd.2016.1471 es_ES
dc.description.references Honrubia-Escribano, A., Gómez-Lázaro, E., Fortmann, J., Sørensen, P., & Martin-Martinez, S. (2018). Generic dynamic wind turbine models for power system stability analysis: A comprehensive review. Renewable and Sustainable Energy Reviews, 81, 1939-1952. doi:10.1016/j.rser.2017.06.005 es_ES
dc.description.references Moschitta, A., Carbone, P., & Muscas, C. (2011). Generalized Likelihood Ratio Test for Voltage Dip Detection. IEEE Transactions on Instrumentation and Measurement, 60(5), 1644-1653. doi:10.1109/tim.2011.2113110 es_ES
dc.description.references Moschitta, A., Carbone, P., & Muscas, C. (2012). Performance Comparison of Advanced Techniques for Voltage Dip Detection. IEEE Transactions on Instrumentation and Measurement, 61(5), 1494-1502. doi:10.1109/tim.2012.2183436 es_ES
dc.description.references Gallo, D., Landi, C., Luiso, M., & Fiorucci, E. (2014). Survey on Voltage Dip Measurements in Standard Framework. IEEE Transactions on Instrumentation and Measurement, 63(2), 374-387. doi:10.1109/tim.2013.2278996 es_ES
dc.description.references Ipinnimo, O., Chowdhury, S., Chowdhury, S. P., & Mitra, J. (2013). A review of voltage dip mitigation techniques with distributed generation in electricity networks. Electric Power Systems Research, 103, 28-36. doi:10.1016/j.epsr.2013.05.004 es_ES
dc.description.references Hossain, M. J., Pota, H. R., Ugrinovskii, V. A., & Ramos, R. A. (2010). Simultaneous STATCOM and Pitch Angle Control for Improved LVRT Capability of Fixed-Speed Wind Turbines. IEEE Transactions on Sustainable Energy, 1(3), 142-151. doi:10.1109/tste.2010.2054118 es_ES
dc.description.references Hossain, M. J., Pota, H. R., & Ramos, R. A. (2011). Robust STATCOM control for the stabilisation of fixed-speed wind turbines during low voltages. Renewable Energy, 36(11), 2897-2905. doi:10.1016/j.renene.2011.04.010 es_ES
dc.description.references Hossain, M. J., Pota, H. R., & Ramos, R. A. (2012). Improved low-voltage-ride-through capability of fixed-speed wind turbines using decentralised control of STATCOM with energy storage system. IET Generation, Transmission & Distribution, 6(8), 719. doi:10.1049/iet-gtd.2011.0537 es_ES
dc.description.references Wessels, C., Hoffmann, N., Molinas, M., & Fuchs, F. W. (2013). StatCom control at wind farms with fixed-speed induction generators under asymmetrical grid faults. IEEE Transactions on Industrial Electronics, 60(7), 2864-2873. doi:10.1109/tie.2012.2233694 es_ES
dc.description.references Obando-Montaño, A., Carrillo, C., Cidrás, J., & Díaz-Dorado, E. (2014). A STATCOM with Supercapacitors for Low-Voltage Ride-Through in Fixed-Speed Wind Turbines. Energies, 7(9), 5922-5952. doi:10.3390/en7095922 es_ES
dc.description.references Moghadasi, A., Sarwat, A., & Guerrero, J. M. (2016). A comprehensive review of low-voltage-ride-through methods for fixed-speed wind power generators. Renewable and Sustainable Energy Reviews, 55, 823-839. doi:10.1016/j.rser.2015.11.020 es_ES
dc.description.references Heydari-doostabad, H., Khalghani, M. R., & Khooban, M. H. (2016). A novel control system design to improve LVRT capability of fixed speed wind turbines using STATCOM in presence of voltage fault. International Journal of Electrical Power & Energy Systems, 77, 280-286. doi:10.1016/j.ijepes.2015.11.011 es_ES
dc.description.references Fortmann, J., Engelhardt, S., Kretschmann, J., Feltes, C., & Erlich, I. (2014). New Generic Model of DFG-Based Wind Turbines for RMS-Type Simulation. IEEE Transactions on Energy Conversion, 29(1), 110-118. doi:10.1109/tec.2013.2287251 es_ES
dc.description.references Goksu, O., Altin, M., Fortmann, J., & Sorensen, P. E. (2016). Field Validation of IEC 61400-27-1 Wind Generation Type 3 Model With Plant Power Factor Controller. IEEE Transactions on Energy Conversion, 31(3), 1170-1178. doi:10.1109/tec.2016.2540006 es_ES
dc.description.references Honrubia-Escribano, A., Jiménez-Buendía, F., Gómez-Lázaro, E., & Fortmann, J. (2016). Validation of Generic Models for Variable Speed Operation Wind Turbines Following the Recent Guidelines Issued by IEC 61400-27. Energies, 9(12), 1048. doi:10.3390/en9121048 es_ES
dc.description.references Honrubia-Escribano, A., Jimenez-Buendia, F., Gomez-Lazaro, E., & Fortmann, J. (2018). Field Validation of a Standard Type 3 Wind Turbine Model for Power System Stability, According to the Requirements Imposed by IEC 61400-27-1. IEEE Transactions on Energy Conversion, 33(1), 137-145. doi:10.1109/tec.2017.2737703 es_ES
dc.description.references Lorenzo-Bonache, A., Honrubia-Escribano, A., Jiménez-Buendía, F., Molina-García, Á., & Gómez-Lázaro, E. (2017). Generic Type 3 Wind Turbine Model Based on IEC 61400-27-1: Parameter Analysis and Transient Response under Voltage Dips. Energies, 10(9), 1441. doi:10.3390/en10091441 es_ES
dc.description.references Honrubia-Escribano, A., Jiménez-Buendía, F., Sosa-Avendaño, J. L., Gartmann, P., Frahm, S., Fortmann, J., … Gómez-Lázaro, E. (2019). Fault-Ride Trough Validation of IEC 61400-27-1 Type 3 and Type 4 Models of Different Wind Turbine Manufacturers. Energies, 12(16), 3039. doi:10.3390/en12163039 es_ES
dc.description.references Wang, L., Zhang, Z., Long, H., Xu, J., & Liu, R. (2017). Wind Turbine Gearbox Failure Identification With Deep Neural Networks. IEEE Transactions on Industrial Informatics, 13(3), 1360-1368. doi:10.1109/tii.2016.2607179 es_ES
dc.description.references Hansen, A. D., & Hansen, L. H. (2007). Wind turbine concept market penetration over 10 years (1995–2004). Wind Energy, 10(1), 81-97. doi:10.1002/we.210 es_ES
dc.description.references IEC 61400-27-1. Electrical Simulation Models—Wind Turbines; Technical Reporthttps://webstore.iec.ch/publication/21811 es_ES
dc.description.references Vázquez-Hernández, C., Serrano-González, J., & Centeno, G. (2017). A Market-Based Analysis on the Main Characteristics of Gearboxes Used in Onshore Wind Turbines. Energies, 10(11), 1686. doi:10.3390/en10111686 es_ES
dc.description.references Duong, M., Grimaccia, F., Leva, S., Mussetta, M., & Le, K. (2015). Improving Transient Stability in a Grid-Connected Squirrel-Cage Induction Generator Wind Turbine System Using a Fuzzy Logic Controller. Energies, 8(7), 6328-6349. doi:10.3390/en8076328 es_ES
dc.description.references Cheng, M., & Zhu, Y. (2014). The state of the art of wind energy conversion systems and technologies: A review. Energy Conversion and Management, 88, 332-347. doi:10.1016/j.enconman.2014.08.037 es_ES
dc.description.references Pinar Pérez, J. M., García Márquez, F. P., Tobias, A., & Papaelias, M. (2013). Wind turbine reliability analysis. Renewable and Sustainable Energy Reviews, 23, 463-472. doi:10.1016/j.rser.2013.03.018 es_ES
dc.description.references Sumathi, S., Ashok Kumar, L., & Surekha, P. (2015). Wind Energy Conversion Systems. Green Energy and Technology, 247-307. doi:10.1007/978-3-319-14941-7_4 es_ES
dc.description.references Fernández-Guillamón, A., Sarasúa, J. I., Chazarra, M., Vigueras-Rodríguez, A., Fernández-Muñoz, D., & Molina-García, Á. (2020). Frequency control analysis based on unit commitment schemes with high wind power integration: A Spanish isolated power system case study. International Journal of Electrical Power & Energy Systems, 121, 106044. doi:10.1016/j.ijepes.2020.106044 es_ES
dc.description.references Liu, J., Gao, Y., Geng, S., & Wu, L. (2017). Nonlinear Control of Variable Speed Wind Turbines via Fuzzy Techniques. IEEE Access, 5, 27-34. doi:10.1109/access.2016.2599542 es_ES
dc.description.references Margaris, I. D., Hansen, A. D., Sørensen, P., & Hatziargyriou, N. D. (2010). Illustration of Modern Wind Turbine Ancillary Services. Energies, 3(6), 1290-1302. doi:10.3390/en3061290 es_ES
dc.description.references Wan, S., Cheng, K., Sheng, X., & Wang, X. (2019). Characteristic Analysis of DFIG Wind Turbine under Blade Mass Imbalance Fault in View of Wind Speed Spatiotemporal Distribution. Energies, 12(16), 3178. doi:10.3390/en12163178 es_ES
dc.description.references Boukhezzar, B., & Siguerdidjane, H. (2011). Nonlinear Control of a Variable-Speed Wind Turbine Using a Two-Mass Model. IEEE Transactions on Energy Conversion, 26(1), 149-162. doi:10.1109/tec.2010.2090155 es_ES
dc.description.references Chu, Yuan, Hu, Pan, & Pan. (2019). Comparative Analysis of Identification Methods for Mechanical Dynamics of Large-Scale Wind Turbine. Energies, 12(18), 3429. doi:10.3390/en12183429 es_ES
dc.description.references Villena-Ruiz, R., Honrubia-Escribano, A., Fortmann, J., & Gómez-Lázaro, E. (2020). Field validation of a standard Type 3 wind turbine model implemented in DIgSILENT-PowerFactory following IEC 61400-27-1 guidelines. International Journal of Electrical Power & Energy Systems, 116, 105553. doi:10.1016/j.ijepes.2019.105553 es_ES
dc.description.references Ekanayake, J. B., Holdsworth, L., & Jenkins, N. (2003). Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines. Electric Power Systems Research, 67(3), 207-215. doi:10.1016/s0378-7796(03)00109-3 es_ES
dc.description.references Brandl, R. (2017). Operational Range of Several Interface Algorithms for Different Power Hardware-In-The-Loop Setups. Energies, 10(12), 1946. doi:10.3390/en10121946 es_ES
dc.description.references Matar, M., Karimi, H., Etemadi, A., & Iravani, R. (2012). A High Performance Real-Time Simulator for Controllers Hardware-in-the-Loop Testing. Energies, 5(6), 1713-1733. doi:10.3390/en5061713 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem