- -

Toxicological implications of amplifying the antibacterial activity of gallic acid by immobilisation on silica particles: a study on C. elegans

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Toxicological implications of amplifying the antibacterial activity of gallic acid by immobilisation on silica particles: a study on C. elegans

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Verdú, Samuel es_ES
dc.contributor.author Ruiz Rico, María es_ES
dc.contributor.author Pérez Jiménez, Alberto José es_ES
dc.contributor.author Barat Baviera, José Manuel es_ES
dc.contributor.author Talens Oliag, Pau es_ES
dc.contributor.author Grau Meló, Raúl es_ES
dc.date.accessioned 2021-06-12T03:33:08Z
dc.date.available 2021-06-12T03:33:08Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 1382-6689 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167847
dc.description.abstract [EN] Immobilisation of natural compounds on solid supports to amplify antimicrobial properties has reported successful results, but modifications to physico-chemical properties can also imply modifications from a toxicological viewpoint. This work aimed to study the immobilising process of gallic acid in the antibacterial activity of L. innocua and its toxicological properties in vivo using Caenorhabditis elegans. The experiment was based on obtaining the minimum bactericidal concentration for free and immobilised gallic acid by comparing lethality, locomotion behaviour, chemotaxis and thermal stress resistance on C.elegans at those concentrations. The results showed a lowering minimum bactericidal concentration and modifications to nematode responses. Increased lethality and velocity of movements was observed. Immobilisation increased the repellent effect of gallic acid with a negative chemotaxis index. Thermal stress resistance was also affected, with higher mortality for immobilised gallic acid compared to bare particles and free gallic acid. Thus despite evidencing a generalised increase in the toxicity of gallic acid in vivo, lowering the minimum bactericidal concentration allowed a bacterial reduction of 99 % with less than one third of mortality for the nematodes exposed to free gallic acid. es_ES
dc.description.sponsorship The authors gratefully acknowledge financial support from the University Polytechnic of Valencia by programme "Ayudas para la Contratacion de Doctores para el Acceso al Sistema Espanol de Ciencia, Tecnologia e Innovacion, en Estructuras de Investigacion de la UPV (PAID-10-17)" and the Ministerio de Ciencia, Innovacion y Universidades, the Agencia Estatal de Investigacion and FEDER-EU (Project RTI2018-101599-B-C21). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Environmental Toxicology and Pharmacology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Gallic acid es_ES
dc.subject Immobilisation es_ES
dc.subject Silica microparticles es_ES
dc.subject LC50 es_ES
dc.subject Behaviour es_ES
dc.subject Thermal resistance es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Toxicological implications of amplifying the antibacterial activity of gallic acid by immobilisation on silica particles: a study on C. elegans es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.etap.2020.103492 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C21/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-17/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Verdú, S.; Ruiz Rico, M.; Pérez Jiménez, AJ.; Barat Baviera, JM.; Talens Oliag, P.; Grau Meló, R. (2020). Toxicological implications of amplifying the antibacterial activity of gallic acid by immobilisation on silica particles: a study on C. elegans. Environmental Toxicology and Pharmacology. 80:1-8. https://doi.org/10.1016/j.etap.2020.103492 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.etap.2020.103492 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 80 es_ES
dc.identifier.pmid 32941999 es_ES
dc.relation.pasarela S\417949 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Abdel-Wahhab, M. A., Aljawish, A., Kenawy, A. M., El-Nekeety, A. A., Hamed, H. S., & Abdel-Aziem, S. H. (2016). Grafting of gallic acid onto chitosan nano particles enhances antioxidant activities in vitro and protects against ochratoxin A toxicity in catfish ( Clarias gariepinus ). Environmental Toxicology and Pharmacology, 41, 279-288. doi:10.1016/j.etap.2015.12.005 es_ES
dc.description.references Borges, A., Saavedra, M. J., & Simões, M. (2012). The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling, 28(7), 755-767. doi:10.1080/08927014.2012.706751 es_ES
dc.description.references Borges, A., Ferreira, C., Saavedra, M. J., & Simões, M. (2013). Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids Against Pathogenic Bacteria. Microbial Drug Resistance, 19(4), 256-265. doi:10.1089/mdr.2012.0244 es_ES
dc.description.references Brenner, S. (1974). THE GENETICS OF CAENORHABDITIS ELEGANS. Genetics, 77(1), 71-94. doi:10.1093/genetics/77.1.71 es_ES
dc.description.references Jayaraman, P., Sakharkar, M. K., Lim, C. S., Tang, T. H., & Sakharkar, K. R. (2010). Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. International Journal of Biological Sciences, 556-568. doi:10.7150/ijbs.6.556 es_ES
dc.description.references Li, L., & Wang, H. (2013). Antibacterial Agents: Enzyme-Coated Mesoporous Silica Nanoparticles as Efficient Antibacterial Agents In Vivo (Adv. Healthcare Mater. 10/2013). Advanced Healthcare Materials, 2(10), 1298-1298. doi:10.1002/adhm.201370050 es_ES
dc.description.references Margie, O., Palmer, C., & Chin-Sang, I. (2013). <em>C. elegans</em> Chemotaxis Assay. Journal of Visualized Experiments, (74). doi:10.3791/50069 es_ES
dc.description.references Pędziwiatr-Werbicka, E., Miłowska, K., Podlas, M., Marcinkowska, M., Ferenc, M., Brahmi, Y., … El Kadib, A. (2014). Oleochemical-Tethered SBA-15-Type Silicates with Tunable Nanoscopic Order, Carboxylic Surface, and Hydrophobic Framework: Cellular Toxicity, Hemolysis, and Antibacterial Activity. Chemistry - A European Journal, 20(31), 9596-9606. doi:10.1002/chem.201402583 es_ES
dc.description.references Pisoschi, A. M., Pop, A., Georgescu, C., Turcuş, V., Olah, N. K., & Mathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922-935. doi:10.1016/j.ejmech.2017.11.095 es_ES
dc.description.references Qi, G., Li, L., Yu, F., & Wang, H. (2013). Vancomycin-Modified Mesoporous Silica Nanoparticles for Selective Recognition and Killing of Pathogenic Gram-Positive Bacteria Over Macrophage-Like Cells. ACS Applied Materials & Interfaces, 5(21), 10874-10881. doi:10.1021/am403940d es_ES
dc.description.references Ruiz-Rico, M., Daubenschüz, H., Pérez-Esteve, É., Marcos, M. D., Amorós, P., Martínez-Máñez, R., & Barat, J. M. (2016). Protective effect of mesoporous silica particles on encapsulated folates. European Journal of Pharmaceutics and Biopharmaceutics, 105, 9-17. doi:10.1016/j.ejpb.2016.05.016 es_ES
dc.description.references Ruiz-Rico, M., Pérez-Esteve, É., Bernardos, A., Sancenón, F., Martínez-Máñez, R., Marcos, M. D., & Barat, J. M. (2017). Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chemistry, 233, 228-236. doi:10.1016/j.foodchem.2017.04.118 es_ES
dc.description.references Saul, N., Pietsch, K., Stürzenbaum, S. R., Menzel, R., & Steinberg, C. E. W. (2011). Diversity of Polyphenol Action in Caenorhabditis elegans: Between Toxicity and Longevity. Journal of Natural Products, 74(8), 1713-1720. doi:10.1021/np200011a es_ES
dc.description.references Singulani, J. de L., Scorzoni, L., Gomes, P. C., Nazaré, A. C., Polaquini, C. R., Regasini, L. O., … Mendes-Giannini, M. J. S. (2017). Activity of gallic acid and its ester derivatives in Caenorhabditis elegans and zebrafish (Danio rerio) models. Future Medicinal Chemistry, 9(16), 1863-1872. doi:10.4155/fmc-2017-0096 es_ES
dc.description.references Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 579(1-2), 200-213. doi:10.1016/j.mrfmmm.2005.03.023 es_ES
dc.description.references Techer, D., Milla, S., Fontaine, P., Viot, S., & Thomas, M. (2015). Acute toxicity and sublethal effects of gallic and pelargonic acids on the zebrafish Danio rerio. Environmental Science and Pollution Research, 22(7), 5020-5029. doi:10.1007/s11356-015-4098-2 es_ES
dc.description.references Vico, T. A., Arce, V. B., Fangio, M. F., Gende, L. B., Bertran, C. A., Mártire, D. O., & Churio, M. S. (2016). Two choices for the functionalization of silica nanoparticles with gallic acid: characterization of the nanomaterials and their antimicrobial activity against Paenibacillus larvae. Journal of Nanoparticle Research, 18(11). doi:10.1007/s11051-016-3652-2 es_ES
dc.description.references Wilson, M. A., Shukitt-Hale, B., Kalt, W., Ingram, D. K., Joseph, J. A., & Wolkow, C. A. (2006). Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell, 5(1), 59-68. doi:10.1111/j.1474-9726.2006.00192.x es_ES
dc.description.references Yuan, P., Pan, L., Xiong, L., Tong, J., Li, J., Huang, J., … Liu, Z. (2018). Black tea increases hypertonic stress resistance in C. elegans. Food & Function, 9(7), 3798-3806. doi:10.1039/c7fo02017a es_ES
dc.description.references Zevian, S. C., & Yanowitz, J. L. (2014). Methodological considerations for heat shock of the nematode Caenorhabditis elegans. Methods, 68(3), 450-457. doi:10.1016/j.ymeth.2014.04.015 es_ES
dc.description.references Zhou, D., Yang, J., Li, H., Cui, C., Yu, Y., Liu, Y., & Lin, K. (2016). The chronic toxicity of bisphenol A to Caenorhabditis elegans after long-term exposure at environmentally relevant concentrations. Chemosphere, 154, 546-551. doi:10.1016/j.chemosphere.2016.04.011 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem