- -

Influence of glucometric 'dynamical' variables on Duodenal-Jejunal Bypass Liner (DJBL) anthropometric and metabolic outcomes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of glucometric 'dynamical' variables on Duodenal-Jejunal Bypass Liner (DJBL) anthropometric and metabolic outcomes

Mostrar el registro completo del ítem

Colás, A.; Varela, M.; Mraz, M.; Novak, D.; Cuesta Frau, D.; Vigil, L.; Benes, M.... (2020). Influence of glucometric 'dynamical' variables on Duodenal-Jejunal Bypass Liner (DJBL) anthropometric and metabolic outcomes. Diabetes/Metabolism Research and Reviews. 36(4):1-9. https://doi.org/10.1002/dmrr.3287

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167868

Ficheros en el ítem

Metadatos del ítem

Título: Influence of glucometric 'dynamical' variables on Duodenal-Jejunal Bypass Liner (DJBL) anthropometric and metabolic outcomes
Autor: Colás, Ana Varela, Manuel Mraz, Milos Novak, Daniel Cuesta Frau, David Vigil, Luis Benes, Marek Pelikanova, Terezie Haluzik, Martin Burda, Vaclav Vargas, Borja
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] Background The endoscopically implanted duodenal-jejunal bypass liner (DJBL) is an attractive alternative to bariatric surgery for obese diabetic patients. This article aims to study dynamical aspects of the glycaemic ...[+]
Palabras clave: Diabesity , Type 2 diabetes mellitus , Continuous glucose monitoring , Duodenal-jejunal bypass liner (DJBL) , Metabolic surgery , Detrended fluctuation analysis (DFA)
Derechos de uso: Cerrado
Fuente:
Diabetes/Metabolism Research and Reviews. (issn: 1520-7552 )
DOI: 10.1002/dmrr.3287
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/dmrr.3287
Código del Proyecto:
info:eu-repo/grantAgreement/CVUT//CZ.02.1.01%2F0.0%2F0.0%2F16-019%2F0000765/
info:eu-repo/grantAgreement/MZCR//DRO IKEM 000023001/
info:eu-repo/grantAgreement/MZCR//RVO VFN 64165/
info:eu-repo/grantAgreement/CVUT//SGS19%2F171%2FOHK3%2F3T%2F13/
Agradecimientos:
Research Center for Informatics, Grant/Award Number: CZ.02.1.01/0.0/0.0/16_019/0000765; Biomedical data acquisition, processing and visualization, Grant/Award Number: SGS19/171/OHK3/3T/13; MH CZ - DRO ("IKEM, IN 00023001"); ...[+]
Tipo: Artículo

References

O’Rahilly, S., & Savill, J. (1997). Science, medicine, and the future Non-insulin dependent diabetes mellitus: the gathering storm. BMJ, 314(7085), 955-955. doi:10.1136/bmj.314.7085.955

World Health Organization.Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks.Geneva:World Health Organization.2009; 62 p.

Hossain, P., Kawar, B., & El Nahas, M. (2007). Obesity and Diabetes in the Developing World — A Growing Challenge. New England Journal of Medicine, 356(3), 213-215. doi:10.1056/nejmp068177 [+]
O’Rahilly, S., & Savill, J. (1997). Science, medicine, and the future Non-insulin dependent diabetes mellitus: the gathering storm. BMJ, 314(7085), 955-955. doi:10.1136/bmj.314.7085.955

World Health Organization.Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks.Geneva:World Health Organization.2009; 62 p.

Hossain, P., Kawar, B., & El Nahas, M. (2007). Obesity and Diabetes in the Developing World — A Growing Challenge. New England Journal of Medicine, 356(3), 213-215. doi:10.1056/nejmp068177

Ogurtsova, K., da Rocha Fernandes, J. D., Huang, Y., Linnenkamp, U., Guariguata, L., Cho, N. H., … Makaroff, L. E. (2017). IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice, 128, 40-50. doi:10.1016/j.diabres.2017.03.024

Beagley, J., Guariguata, L., Weil, C., & Motala, A. A. (2014). Global estimates of undiagnosed diabetes in adults. Diabetes Research and Clinical Practice, 103(2), 150-160. doi:10.1016/j.diabres.2013.11.001

Zimmet, P., Alberti, K. G. M. M., & Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature, 414(6865), 782-787. doi:10.1038/414782a

Chatterjee, S., Khunti, K., & Davies, M. J. (2017). Type 2 diabetes. The Lancet, 389(10085), 2239-2251. doi:10.1016/s0140-6736(17)30058-2

Haffner, S. M., Lehto, S., Rönnemaa, T., Pyörälä, K., & Laakso, M. (1998). Mortality from Coronary Heart Disease in Subjects with Type 2 Diabetes and in Nondiabetic Subjects with and without Prior Myocardial Infarction. New England Journal of Medicine, 339(4), 229-234. doi:10.1056/nejm199807233390404

Rubino, F., & Cummings, D. E. (2012). The coming of age of metabolic surgery. Nature Reviews Endocrinology, 8(12), 702-704. doi:10.1038/nrendo.2012.207

Pournaras, D. J., Glicksman, C., Vincent, R. P., Kuganolipava, S., Alaghband-Zadeh, J., Mahon, D., … le Roux, C. W. (2012). The Role of Bile After Roux-en-Y Gastric Bypass in Promoting Weight Loss and Improving Glycaemic Control. Endocrinology, 153(8), 3613-3619. doi:10.1210/en.2011-2145

Cummings, D. E. (2009). Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. International Journal of Obesity, 33(S1), S33-S40. doi:10.1038/ijo.2009.15

Ribaric, G., Buchwald, J. N., & McGlennon, T. W. (2013). Diabetes and Weight in Comparative Studies of Bariatric Surgery vs Conventional Medical Therapy: A Systematic Review and Meta-Analysis. Obesity Surgery, 24(3), 437-455. doi:10.1007/s11695-013-1160-3

Kwok, C. S., Pradhan, A., Khan, M. A., Anderson, S. G., Keavney, B. D., Myint, P. K., … Loke, Y. K. (2014). Bariatric surgery and its impact on cardiovascular disease and mortality: A systematic review and meta-analysis. International Journal of Cardiology, 173(1), 20-28. doi:10.1016/j.ijcard.2014.02.026

Rubino, F., Nathan, D. M., Eckel, R. H., Schauer, P. R., Alberti, K. G. M. M., Zimmet, P. Z., … Cummings, D. E. (2016). Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations. Diabetes Care, 39(6), 861-877. doi:10.2337/dc16-0236

Afonso, B. B., Rosenthal, R., Li, K. M., Zapatier, J., & Szomstein, S. (2010). Perceived barriers to bariatric surgery among morbidly obese patients. Surgery for Obesity and Related Diseases, 6(1), 16-21. doi:10.1016/j.soard.2009.07.006

Patel, S. R., Mason, J., & Hakim, N. (2012). The Duodenal-Jejunal Bypass Sleeve (EndoBarrier Gastrointestinal Liner) for Weight Loss and Treatment of Type II Diabetes. Indian Journal of Surgery, 74(4), 275-277. doi:10.1007/s12262-012-0721-3

Kumar, N. (2016). Weight loss endoscopy: Development, applications, and current status. World Journal of Gastroenterology, 22(31), 7069. doi:10.3748/wjg.v22.i31.7069

Sullivan, S., Edmundowicz, S. A., & Thompson, C. C. (2017). Endoscopic Bariatric and Metabolic Therapies: New and Emerging Technologies. Gastroenterology, 152(7), 1791-1801. doi:10.1053/j.gastro.2017.01.044

Rohde, U., Hedbäck, N., Gluud, L. L., Vilsbøll, T., & Knop, F. K. (2016). Effect of the EndoBarrier Gastrointestinal Liner on obesity and type 2 diabetes: a systematic review and meta-analysis. Diabetes, Obesity and Metabolism, 18(3), 300-305. doi:10.1111/dom.12603

Rodriguez-Grunert, L., Galvao Neto, M. P., Alamo, M., Ramos, A. C., Baez, P. B., & Tarnoff, M. (2008). First human experience with endoscopically delivered and retrieved duodenal-jejunal bypass sleeve. Surgery for Obesity and Related Diseases, 4(1), 55-59. doi:10.1016/j.soard.2007.07.012

Rodriguez, L., Reyes, E., Fagalde, P., Oltra, M. S., Saba, J., Aylwin, C. G., … Sorli, C. (2009). Pilot Clinical Study of an Endoscopic, Removable Duodenal-Jejunal Bypass Liner for the Treatment of Type 2 Diabetes. Diabetes Technology & Therapeutics, 11(11), 725-732. doi:10.1089/dia.2009.0063

Escalona, A., Pimentel, F., Sharp, A., Becerra, P., Slako, M., Turiel, D., … Gersin, K. (2012). Weight Loss and Metabolic Improvement in Morbidly Obese Subjects Implanted for 1 Year With an Endoscopic Duodenal-Jejunal Bypass Liner. Annals of Surgery, 255(6), 1080-1085. doi:10.1097/sla.0b013e31825498c4

De Jonge, C., Rensen, S. S., Verdam, F. J., Vincent, R. P., Bloom, S. R., Buurman, W. A., … Greve, J. W. M. (2013). Endoscopic Duodenal–Jejunal Bypass Liner Rapidly Improves Type 2 Diabetes. Obesity Surgery, 23(9), 1354-1360. doi:10.1007/s11695-013-0921-3

Cohen, R., le Roux, C. W., Papamargaritis, D., Salles, J. E., Petry, T., Correa, J. L., … Sorli, C. (2013). Role of proximal gut exclusion from food on glucose homeostasis in patients with Type 2 diabetes. Diabetic Medicine, 30(12), 1482-1486. doi:10.1111/dme.12268

Haluzík, M., Kratochvílová, H., Haluzíková, D., & Mráz, M. (2018). Gut as an emerging organ for the treatment of diabetes: focus on mechanism of action of bariatric and endoscopic interventions. Journal of Endocrinology, 237(1), R1-R17. doi:10.1530/joe-17-0438

El Khoury, L., Chouillard, E., Chahine, E., Saikaly, E., Debs, T., & Kassir, R. (2018). Metabolic Surgery and Diabesity: a Systematic Review. Obesity Surgery, 28(7), 2069-2077. doi:10.1007/s11695-018-3252-6

Thaler, J. P., & Cummings, D. E. (2009). Hormonal and Metabolic Mechanisms of Diabetes Remission after Gastrointestinal Surgery. Endocrinology, 150(6), 2518-2525. doi:10.1210/en.2009-0367

Kaválková, P., Mráz, M., Trachta, P., Kloučková, J., Cinkajzlová, A., Lacinová, Z., … Haluzík, M. (2016). Endocrine effects of duodenal–jejunal exclusion in obese patients with type 2 diabetes mellitus. Journal of Endocrinology, 231(1), 11-22. doi:10.1530/joe-16-0206

Mingrone, G., Panunzi, S., De Gaetano, A., Guidone, C., Iaconelli, A., Leccesi, L., … Rubino, F. (2012). Bariatric Surgery versus Conventional Medical Therapy for Type 2 Diabetes. New England Journal of Medicine, 366(17), 1577-1585. doi:10.1056/nejmoa1200111

Mingrone, G., Panunzi, S., De Gaetano, A., Guidone, C., Iaconelli, A., Nanni, G., … Rubino, F. (2015). Bariatric–metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. The Lancet, 386(9997), 964-973. doi:10.1016/s0140-6736(15)00075-6

Sjöström, L., Peltonen, M., Jacobson, P., Ahlin, S., Andersson-Assarsson, J., Anveden, Å., … Carlsson, L. M. S. (2014). Association of Bariatric Surgery With Long-term Remission of Type 2 Diabetes and With Microvascular and Macrovascular Complications. JAMA, 311(22), 2297. doi:10.1001/jama.2014.5988

Monnier, L., Mas, E., Ginet, C., Michel, F., Villon, L., Cristol, J.-P., & Colette, C. (2006). Activation of Oxidative Stress by Acute Glucose Fluctuations Compared With Sustained Chronic Hyperglycemia in Patients With Type 2 Diabetes. JAMA, 295(14), 1681. doi:10.1001/jama.295.14.1681

Ceriello, A., Esposito, K., Piconi, L., Ihnat, M. A., Thorpe, J. E., Testa, R., … Giugliano, D. (2008). Oscillating Glucose Is More Deleterious to Endothelial Function and Oxidative Stress Than Mean Glucose in Normal and Type 2 Diabetic Patients. Diabetes, 57(5), 1349-1354. doi:10.2337/db08-0063

Di Flaviani, A., Picconi, F., Di Stefano, P., Giordani, I., Malandrucco, I., Maggio, P., … Frontoni, S. (2011). Impact of Glycemic and Blood Pressure Variability on Surrogate Measures of Cardiovascular Outcomes in Type 2 Diabetic Patients. Diabetes Care, 34(7), 1605-1609. doi:10.2337/dc11-0034

Nusca, A., Tuccinardi, D., Albano, M., Cavallaro, C., Ricottini, E., Manfrini, S., … Di Sciascio, G. (2018). Glycemic variability in the development of cardiovascular complications in diabetes. Diabetes/Metabolism Research and Reviews, 34(8), e3047. doi:10.1002/dmrr.3047

Dungan, K. M., Binkley, P., Nagaraja, H. N., Schuster, D., & Osei, K. (2011). The effect of glycaemic control and glycaemic variability on mortality in patients hospitalized with congestive heart failure. Diabetes/Metabolism Research and Reviews, 27(1), 85-93. doi:10.1002/dmrr.1155

Monnier, L., Colette, C., & Owens, D. R. (2009). Integrating glycaemic variability in the glycaemic disorders of type 2 diabetes: a move towards a unified glucose tetrad concept. Diabetes/Metabolism Research and Reviews, 25(5), 393-402. doi:10.1002/dmrr.962

Zaccardi, F., Pitocco, D., & Ghirlanda, G. (2009). Glycemic risk factors of diabetic vascular complications: the role of glycemic variability. Diabetes/Metabolism Research and Reviews, 25(3), 199-207. doi:10.1002/dmrr.938

Frontoni, S., Di Bartolo, P., Avogaro, A., Bosi, E., Paolisso, G., & Ceriello, A. (2013). Glucose variability: An emerging target for the treatment of diabetes mellitus. Diabetes Research and Clinical Practice, 102(2), 86-95. doi:10.1016/j.diabres.2013.09.007

Service, F. J., Molnar, G. D., Rosevear, J. W., Ackerman, E., Gatewood, L. C., & Taylor, W. F. (1970). Mean Amplitude of Glycemic Excursions, a Measure of Diabetic Instability. Diabetes, 19(9), 644-655. doi:10.2337/diab.19.9.644

Freire, A. X., & Murillo, L. C. (2010). How «sweet» complexity is and how «bitter» variability can be; the new aspect of intensive care unit hyperglycemia*. Critical Care Medicine, 38(3), 996-997. doi:10.1097/ccm.0b013e3181ce217e

Lundelin, K., Vigil, L., Bua, S., Gomez-Mestre, I., Honrubia, T., & Varela, M. (2010). Differences in complexity of glycemic profile in survivors and nonsurvivors in an intensive care unit: A pilot study*. Critical Care Medicine, 38(3), 849-854. doi:10.1097/ccm.0b013e3181ce49cf

Varela, M. (2008). The route to diabetes: Loss of complexity in the glycemic profile from health through the metabolic syndrome to type 2 diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, Volume 1, 3-11. doi:10.2147/dmso.s3812

Peng, C. ‐K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1), 82-87. doi:10.1063/1.166141

Ogata, H., Tokuyama, K., Nagasaka, S., Tsuchita, T., Kusaka, I., Ishibashi, S., … Yamamoto, Y. (2012). The lack of long-range negative correlations in glucose dynamics is associated with worse glucose control in patients with diabetes mellitus. Metabolism, 61(7), 1041-1050. doi:10.1016/j.metabol.2011.12.007

Rodríguez de Castro, C., Vigil, L., Vargas, B., García Delgado, E., García Carretero, R., Ruiz-Galiana, J., & Varela, M. (2016). Glucose time series complexity as a predictor of type 2 diabetes. Diabetes/Metabolism Research and Reviews, 33(2), e2831. doi:10.1002/dmrr.2831

Abdul-Ghani, M. A., Williams, K., DeFronzo, R., & Stern, M. (2006). Risk of Progression to Type 2 Diabetes Based on Relationship Between Postload Plasma Glucose and Fasting Plasma Glucose. Diabetes Care, 29(7), 1613-1618. doi:10.2337/dc05-1711

Nathan, D. M., Davidson, M. B., DeFronzo, R. A., Heine, R. J., Henry, R. R., Pratley, R., & Zinman, B. (2007). Impaired Fasting Glucose and Impaired Glucose Tolerance: Implications for care. Diabetes Care, 30(3), 753-759. doi:10.2337/dc07-9920

Abdul-Ghani, M. A., Tripathy, D., & DeFronzo, R. A. (2006). Contributions of  -Cell Dysfunction and Insulin Resistance to the Pathogenesis of Impaired Glucose Tolerance and Impaired Fasting Glucose. Diabetes Care, 29(5), 1130-1139. doi:10.2337/dc05-2179

Colas, A., Vigil, L., Rodríguez de Castro, C., Vargas, B., & Varela, M. (2018). New insights from continuous glucose monitoring into the route to diabetes. Diabetes/Metabolism Research and Reviews, 34(5), e3002. doi:10.1002/dmrr.3002

Meyer, C., Pimenta, W., Woerle, H. J., Van Haeften, T., Szoke, E., Mitrakou, A., & Gerich, J. (2006). Different Mechanisms for Impaired Fasting Glucose and Impaired Postprandial Glucose Tolerance in Humans. Diabetes Care, 29(8), 1909-1914. doi:10.2337/dc06-0438

Charles, M. A., Fontbonne, A., Thibult, N., Warnet, J.-M., Rosselin, G. E., & Eschwege, E. (1991). Risk Factors for NIDDM in White Population: Paris Prospective Study. Diabetes, 40(7), 796-799. doi:10.2337/diab.40.7.796

Staimez, L. R., Weber, M. B., Ranjani, H., Ali, M. K., Echouffo-Tcheugui, J. B., Phillips, L. S., … Narayan, K. M. V. (2013). Evidence of Reduced β-Cell Function in Asian Indians With Mild Dysglycemia. Diabetes Care, 36(9), 2772-2778. doi:10.2337/dc12-2290

Danne, T., Nimri, R., Battelino, T., Bergenstal, R. M., Close, K. L., DeVries, J. H., … Phillip, M. (2017). International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care, 40(12), 1631-1640. doi:10.2337/dc17-1600

(2018). 7. Diabetes Technology: Standards of Medical Care in Diabetes—2019. Diabetes Care, 42(Supplement 1), S71-S80. doi:10.2337/dc19-s007

Lu, J., Ma, X., Zhou, J., Zhang, L., Mo, Y., Ying, L., … Jia, W. (2018). Association of Time in Range, as Assessed by Continuous Glucose Monitoring, With Diabetic Retinopathy in Type 2 Diabetes. Diabetes Care, 41(11), 2370-2376. doi:10.2337/dc18-1131

Dixon, J. B., & O’Brien, P. E. (2002). Health Outcomes of Severely Obese Type 2 Diabetic Subjects 1 Year After Laparoscopic Adjustable Gastric Banding. Diabetes Care, 25(2), 358-363. doi:10.2337/diacare.25.2.358

Beck, R. W., Bergenstal, R. M., Riddlesworth, T. D., Kollman, C., Li, Z., Brown, A. S., & Close, K. L. (2018). Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials. Diabetes Care, 42(3), 400-405. doi:10.2337/dc18-1444

(2018). Need for Regulatory Change to Incorporate Beyond A1C Glycemic Metrics. Diabetes Care, 41(6), e92-e94. doi:10.2337/dci18-0010

Advani, A. (2019). Positioning time in range in diabetes management. Diabetologia, 63(2), 242-252. doi:10.1007/s00125-019-05027-0

Kovatchev, B. P. (2017). Metrics for glycaemic control — from HbA1c to continuous glucose monitoring. Nature Reviews Endocrinology, 13(7), 425-436. doi:10.1038/nrendo.2017.3

Narayan, K. M. V. (2016). Type 2 Diabetes: Why We Are Winning the Battle but Losing the War? 2015 Kelly West Award Lecture. Diabetes Care, 39(5), 653-663. doi:10.2337/dc16-0205

Bonora, E., Targher, G., Alberiche, M., Bonadonna, R. C., Saggiani, F., Zenere, M. B., … Muggeo, M. (2000). Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care, 23(1), 57-63. doi:10.2337/diacare.23.1.57

Schouten, R., Rijs, C. S., Bouvy, N. D., Hameeteman, W., Koek, G. H., Janssen, I. M. C., & Greve, J.-W. M. (2010). A Multicenter, Randomized Efficacy Study of the EndoBarrier Gastrointestinal Liner for Presurgical Weight Loss Prior to Bariatric Surgery. Annals of Surgery, 251(2), 236-243. doi:10.1097/sla.0b013e3181bdfbff

Wood, G. C., Mirshahi, T., Still, C. D., & Hirsch, A. G. (2016). Association of DiaRem Score With Cure of Type 2 Diabetes Following Bariatric Surgery. JAMA Surgery, 151(8), 779. doi:10.1001/jamasurg.2016.0251

Klonoff, D. C. (2005). Continuous Glucose Monitoring: Roadmap for 21st century diabetes therapy. Diabetes Care, 28(5), 1231-1239. doi:10.2337/diacare.28.5.1231

Rodbard, D. (2016). Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities. Diabetes Technology & Therapeutics, 18(S2), S2-3-S2-13. doi:10.1089/dia.2015.0417

Buchwald, H., Avidor, Y., Braunwald, E., Jensen, M. D., Pories, W., Fahrbach, K., & Schoelles, K. (2004). Bariatric Surgery. JAMA, 292(14), 1724. doi:10.1001/jama.292.14.1724

Koehestanie, P., Betzel, B., Aarts, E. O., Janssen, I. M. C., Wahab, P., & Berends, F. J. (2015). Is reimplantation of the duodenal-jejunal bypass liner feasible? Surgery for Obesity and Related Diseases, 11(5), 1099-1104. doi:10.1016/j.soard.2015.01.016

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem