- -

Nozzle rate of injection estimation from hole to hole momentum flux data with different fossil and renewable fuels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nozzle rate of injection estimation from hole to hole momentum flux data with different fossil and renewable fuels

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Payri, Raul es_ES
dc.contributor.author Bracho Leon, Gabriela es_ES
dc.contributor.author Soriano, J. A. es_ES
dc.contributor.author Fernández-Yáñez, P. es_ES
dc.contributor.author Armas, O. es_ES
dc.date.accessioned 2021-06-29T03:31:21Z
dc.date.available 2021-06-29T03:31:21Z
dc.date.issued 2020-11-01 es_ES
dc.identifier.issn 0016-2361 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168481
dc.description.abstract [EN] Due to environmental problems, research on fuel economy and pollutant emissions in internal combustion engines has drawn the attention of automobile manufacturers and researchers. The diesel engine is one of the most efficient alternatives and one of the main areas of the study in these engines is spray mixing, recognized as a critical factor in combustion control and the reduction of its related contaminants. The studies about fuel sprays rely on experimental data of the rate of injection, which can only be obtained with high-cost equipment. The aim of this paper is to validate for different fuels a method for the determination of the rate of injection based on spray momentum measurements and the total injected mass. After a proper tuning of the test momentum flux device, the injection rate results were validated using the Bosch tube method. The technique was validated for four different fuels, diesel, biodiesel, GTL (Gas-to-liquid) and Farnesane, in order to identify the consequences of the fuel properties on the injection performance characteristics and the estimation method. The results of rate of injection following the procedures presented showed good accuracy when compared to experimental values. These methods can be employed to estimate this parameter when experimental facilities for this purpose are not available. es_ES
dc.description.sponsorship Authors wish to thank the financial support provided by: i) the Spanish Ministry of Science, Innovation and Universities to the project RECUPERA, Ref. Ref.: RTI2018-095923-B-C21 and ii) the government of Castilla-La Mancha community to the project ASUAV, Ref. SBPLY/19/180501/000116. Authors also want to thank: i) the companies REPSOL, SASOL and AMYRIS by the fuels supply, ii) the technical support provided by Nissan Europe Technology Centre Spain. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Fuel es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Diesel es_ES
dc.subject Farnesane es_ES
dc.subject GTL es_ES
dc.subject Biodiesel es_ES
dc.subject Rate of injection es_ES
dc.subject Momentum flux es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Nozzle rate of injection estimation from hole to hole momentum flux data with different fossil and renewable fuels es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.fuel.2020.118404 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095923-B-C21/ES/RECUPERACION DE ENERGIAS RESIDUALES EN VEHICULOS LIGEROS. IMPACTO TECNOLOGICO./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F19%2F180501%2F000116/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Payri, R.; Bracho Leon, G.; Soriano, JA.; Fernández-Yáñez, P.; Armas, O. (2020). Nozzle rate of injection estimation from hole to hole momentum flux data with different fossil and renewable fuels. Fuel. 279:1-10. https://doi.org/10.1016/j.fuel.2020.118404 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.fuel.2020.118404 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 279 es_ES
dc.relation.pasarela S\414318 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES
dc.description.references Johnson, T. V. (2011). Diesel Emissions in Review. SAE International Journal of Engines, 4(1), 143-157. doi:10.4271/2011-01-0304 es_ES
dc.description.references Musculus, M. P. B., Miles, P. C., & Pickett, L. M. (2013). Conceptual models for partially premixed low-temperature diesel combustion. Progress in Energy and Combustion Science, 39(2-3), 246-283. doi:10.1016/j.pecs.2012.09.001 es_ES
dc.description.references Han, S., Kim, J., & Bae, C. (2014). Effect of air–fuel mixing quality on characteristics of conventional and low temperature diesel combustion. Applied Energy, 119, 454-466. doi:10.1016/j.apenergy.2013.12.045 es_ES
dc.description.references Korkmaz, M., Ritter, D., Jochim, B., Beeckmann, J., Abel, D., & Pitsch, H. (2019). Effects of injection strategy on performance and emissions metrics in a diesel/methane dual-fuel single-cylinder compression ignition engine. International Journal of Engine Research, 20(10), 1059-1072. doi:10.1177/1468087419836586 es_ES
dc.description.references Desantes, J. M., García-Oliver, J. M., García, A., & Xuan, T. (2018). Optical study on characteristics of non-reacting and reacting diesel spray with different strategies of split injection. International Journal of Engine Research, 20(6), 606-623. doi:10.1177/1468087418773012 es_ES
dc.description.references Carlucci, P., Ficarella, A., & Laforgia, D. (2005). Effects on combustion and emissions of early and pilot fuel injections in diesel engines. International Journal of Engine Research, 6(1), 43-60. doi:10.1243/146808705x7301 es_ES
dc.description.references O’Connor, J., & Musculus, M. (2013). Effects of exhaust gas recirculation and load on soot in a heavy-duty optical diesel engine with close-coupled post injections for high-efficiency combustion phasing. International Journal of Engine Research, 15(4), 421-443. doi:10.1177/1468087413488767 es_ES
dc.description.references Park, C., & Busch, S. (2017). The influence of pilot injection on high-temperature ignition processes and early flame structure in a high-speed direct injection diesel engine. International Journal of Engine Research, 19(6), 668-681. doi:10.1177/1468087417728630 es_ES
dc.description.references Herfatmanesh, M. R., Lu, P., Attar, M. A., & Zhao, H. (2013). Experimental investigation into the effects of two-stage injection on fuel injection quantity, combustion and emissions in a high-speed optical common rail diesel engine. Fuel, 109, 137-147. doi:10.1016/j.fuel.2013.01.013 es_ES
dc.description.references Xu-Guang, T., Hai-Lang, S., Tao, Q., Zhi-Qiang, F., & Wen-Hui, Y. (2012). The Impact of Common Rail System’s Control Parameters on the Performance of High-power Diesel. Energy Procedia, 16, 2067-2072. doi:10.1016/j.egypro.2012.01.314 es_ES
dc.description.references Bosch W. The Fuel Rate Indicator: A New Measuring Instrument For Display of the Characteristics of Individual Injection, 1966, p. 660749. https://doi.org/10.4271/660749. es_ES
dc.description.references Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 32(1), 46-49. doi:10.1111/j.1747-1567.2007.00188.x es_ES
dc.description.references PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009 es_ES
dc.description.references Postrioti, L., Mariani, F., & Battistoni, M. (2012). Experimental and numerical momentum flux evaluation of high pressure Diesel spray. Fuel, 98, 149-163. doi:10.1016/j.fuel.2012.03.043 es_ES
dc.description.references Payri R, Gimeno J, Marti-Aldaravi P, Vaquerizo D. Momentum flux measurements on an ECN GDi injector, SAE Technical Paper, 2015, 2015–01–1893. es_ES
dc.description.references Payri, R., Gimeno, J., Mata, C., & Viera, A. (2017). Rate of injection measurements of a direct-acting piezoelectric injector for different operating temperatures. Energy Conversion and Management, 154, 387-393. doi:10.1016/j.enconman.2017.11.029 es_ES
dc.description.references Desantes JM, Payri R, Salvador FJ, Gimeno J. “Prediction of Spray Penetration by Means of Spray Momentum Flux,” SAE Technical Paper 2006-01-1387, 2006. es_ES
dc.description.references Soriano, J. A., Mata, C., Armas, O., & Ávila, C. (2018). A zero-dimensional model to simulate injection rate from first generation common rail diesel injectors under thermodynamic diagnosis. Energy, 158, 845-858. doi:10.1016/j.energy.2018.06.054 es_ES
dc.description.references Zhu X, Limbu S, Cung K, De Ojeda W, Lee S-Y. HEUI Injector Modeling and ROI Experiments for High Injection Pressure of Diesel and Dimethyl Ether (DME), 2016, p. 2016-01–0855. https://doi.org/10.4271/2016-01-0855. es_ES
dc.description.references Mancaruso E, Marialto R, Sequino L, Vaglieco BM. Comparison of Spray Characteristics Measured in an Optical Single Cylinder Diesel Engine with 1D Model, 2014, p. 2014-01–1424. https://doi.org/10.4271/2014-01-1424. es_ES
dc.description.references Musculus, M. P. B., & Kattke, K. (2009). Entrainment Waves in Diesel Jets. SAE International Journal of Engines, 2(1), 1170-1193. doi:10.4271/2009-01-1355 es_ES
dc.description.references Shu, J., Fu, J., Liu, J., Ma, Y., Wang, S., Deng, B., & Zeng, D. (2019). Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model. Applied Energy, 233-234, 182-195. doi:10.1016/j.apenergy.2018.10.040 es_ES
dc.description.references Asadi, A., Zhang, Y., Mohammadi, H., Khorand, H., Rui, Z., Doranehgard, M. H., & Bozorg, M. V. (2019). Combustion and emission characteristics of biomass derived biofuel, premixed in a diesel engine: A CFD study. Renewable Energy, 138, 79-89. doi:10.1016/j.renene.2019.01.069 es_ES
dc.description.references Fernández-Yáñez, P., Armas, O., Gómez, A., & Gil, A. (2017). Developing Computational Fluid Dynamics (CFD) Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles. Applied Sciences, 7(6), 590. doi:10.3390/app7060590 es_ES
dc.description.references Gholinia, M., Pourfallah, M., & Chamani, H. R. (2018). Numerical investigation of heat transfers in the water jacket of heavy duty diesel engine by considering boiling phenomenon. Case Studies in Thermal Engineering, 12, 497-509. doi:10.1016/j.csite.2018.07.003 es_ES
dc.description.references Fontanesi, S., & Giacopini, M. (2013). Multiphase CFD–CHT optimization of the cooling jacket and FEM analysis of the engine head of a V6 diesel engine. Applied Thermal Engineering, 52(2), 293-303. doi:10.1016/j.applthermaleng.2012.12.005 es_ES
dc.description.references Fernández-Yáñez, P., Armas, O., & Martínez-Martínez, S. (2016). Impact of relative position vehicle-wind blower in a roller test bench under climatic chamber. Applied Thermal Engineering, 106, 266-274. doi:10.1016/j.applthermaleng.2016.06.021 es_ES
dc.description.references Wang, G., Gao, Q., Zhang, T., & Wang, Y. (2016). A simulation approach of under-hood thermal management. Advances in Engineering Software, 100, 43-52. doi:10.1016/j.advengsoft.2016.06.010 es_ES
dc.description.references Payri, R., De la Morena, J., Pagano, V., Hussain, A., Sammut, G., & Smith, L. (2018). One-dimensional modeling of the interaction between close-coupled injection events for a ballistic solenoid injector. International Journal of Engine Research, 20(4), 452-469. doi:10.1177/1468087418760973 es_ES
dc.description.references Mulemane A, Han J-S, Lu P-H, Yoon S-J, Lai M-C. Modeling Dynamic Behavior of Diesel Fuel Injection Systems, 2004, p. 2004-01–0536. https://doi.org/10.4271/2004-01-0536. es_ES
dc.description.references Postrioti, L., Mariani, F., Battistoni, M., & Mariani, A. (2009). Experimental and Numerical Evaluation of Diesel Spray Momentum Flux. SAE International Journal of Engines, 2(2), 287-299. doi:10.4271/2009-01-2772 es_ES
dc.description.references Payri, R., Gimeno, J., Cuisano, J., & Arco, J. (2016). Hydraulic characterization of diesel engine single-hole injectors. Fuel, 180, 357-366. doi:10.1016/j.fuel.2016.03.083 es_ES
dc.description.references Salvador, F. J., Gimeno, J., Carreres, M., & Crialesi-Esposito, M. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part I: Experimental mass flow rate measurements and discussion. Energy Conversion and Management, 114, 364-375. doi:10.1016/j.enconman.2016.02.042 es_ES
dc.description.references Viera, J. P., Payri, R., Swantek, A. B., Duke, D. J., Sovis, N., Kastengren, A. L., & Powell, C. F. (2016). Linking instantaneous rate of injection to X-ray needle lift measurements for a direct-acting piezoelectric injector. Energy Conversion and Management, 112, 350-358. doi:10.1016/j.enconman.2016.01.038 es_ES
dc.description.references Desantes, J. M., Payri, R., Garcia, J. M., & Salvador, F. J. (2007). A contribution to the understanding of isothermal diesel spray dynamics. Fuel, 86(7-8), 1093-1101. doi:10.1016/j.fuel.2006.10.011 es_ES
dc.description.references Soriano, J. A., García-Contreras, R., Gómez, A., & Mata, C. (2019). Comparative study of the effect of a new renewable paraffinic fuel on the combustion process of a light-duty diesel engine. Energy, 189, 116337. doi:10.1016/j.energy.2019.116337 es_ES
dc.description.references Soriano, J.A., García-Contreras, R Leiva-Candia, D. Soto, F. Influence on Performance and Emissions of an Automotive Diesel Engine Fueled with Biodiesel and Paraffinic Fuels: GTL and Biojet Fuel Farnesane. Energy and Fuels 2018 32(4), pp. 5125-5133 DOI: 10.1021/acs.energyfuels.7b03779. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem