- -

Learning alternative ways of performing a task

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Learning alternative ways of performing a task

Mostrar el registro completo del ítem

Nieves, D.; Ramírez Quintana, MJ.; Montserrat Aranda, C.; Ferri Ramírez, C.; Hernández-Orallo, J. (2020). Learning alternative ways of performing a task. Expert Systems with Applications. 148:1-18. https://doi.org/10.1016/j.eswa.2020.113263

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168606

Ficheros en el ítem

Metadatos del ítem

Título: Learning alternative ways of performing a task
Autor: Nieves, D. Ramírez Quintana, María José Montserrat Aranda, Carlos Ferri Ramírez, César Hernández-Orallo, José
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] A common way of learning to perform a task is to observe how it is carried out by experts. However, it is well known that for most tasks there is no unique way to perform them. This is especially noticeable the more ...[+]
Palabras clave: Task learning , Inductive learning , Process mining , Identifying strategies
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Expert Systems with Applications. (issn: 0957-4174 )
DOI: 10.1016/j.eswa.2020.113263
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.eswa.2020.113263
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094403-B-C32/ES/RAZONAMIENTO FORMAL PARA TECNOLOGIAS FACILITADORAS Y EMERGENTES/
info:eu-repo/grantAgreement/MINECO//TIN2014-61716-EXP/ES/SUPERVISION AUTOMATICA MEDIANTE OBSERVACION: TECNOLOGIA EXTENSIVA PARA LA ADQUISICION DE DESTREZAS DE FORMA AUTONOMA Y LA ASISTENCIA EN PROCEDIMIENTOS./
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F098/ES/DeepTrust: Deep Logic Technology for Software Trustworthiness/
info:eu-repo/grantAgreement/AEI//BES-2016-078863/
Agradecimientos:
This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grants TIN2014-61716-EXP (SUPERVASION) and RTI2018-094403-B-C32, and by Generalitat Valenciana under grant PROMETEO/2019/098. David ...[+]
Tipo: Artículo

References

van der Aalst, W. M., Bolt, A., & van Zelst, S. J. (2017). Rapidprom: Mine your processes and not just your data. arXiv:1703.03740.

Van der Aalst, W. M. P., Reijers, H. A., Weijters, A. J. M. M., van Dongen, B. F., Alves de Medeiros, A. K., Song, M., & Verbeek, H. M. W. (2007). Business process mining: An industrial application. Information Systems, 32(5), 713-732. doi:10.1016/j.is.2006.05.003

Adé, H., de Raedt, L., & Bruynooghe, M. (1995). Declarative bias for specific-to-general ILP systems. Machine Learning, 20(1-2), 119-154. doi:10.1007/bf00993477 [+]
van der Aalst, W. M., Bolt, A., & van Zelst, S. J. (2017). Rapidprom: Mine your processes and not just your data. arXiv:1703.03740.

Van der Aalst, W. M. P., Reijers, H. A., Weijters, A. J. M. M., van Dongen, B. F., Alves de Medeiros, A. K., Song, M., & Verbeek, H. M. W. (2007). Business process mining: An industrial application. Information Systems, 32(5), 713-732. doi:10.1016/j.is.2006.05.003

Adé, H., de Raedt, L., & Bruynooghe, M. (1995). Declarative bias for specific-to-general ILP systems. Machine Learning, 20(1-2), 119-154. doi:10.1007/bf00993477

Ahmidi, N., Tao, L., Sefati, S., Gao, Y., Lea, C., Haro, B. B., … Hager, G. D. (2017). A Dataset and Benchmarks for Segmentation and Recognition of Gestures in Robotic Surgery. IEEE Transactions on Biomedical Engineering, 64(9), 2025-2041. doi:10.1109/tbme.2016.2647680

Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action understanding as inverse planning. Cognition, 113(3), 329-349. doi:10.1016/j.cognition.2009.07.005

Blum, T., Padoy, N., Feußner, H., & Navab, N. (2008). Workflow mining for visualization and analysis of surgeries. International Journal of Computer Assisted Radiology and Surgery, 3(5), 379-386. doi:10.1007/s11548-008-0239-0

Camacho, R., Carreira, P., Lynce, I., & Resendes, S. (2014). An ontology-based approach to conflict resolution in Home and Building Automation Systems. Expert Systems with Applications, 41(14), 6161-6173. doi:10.1016/j.eswa.2014.04.017

Caruana, R. (1997). Machine Learning, 28(1), 41-75. doi:10.1023/a:1007379606734

Liming Chen, Hoey, J., Nugent, C. D., Cook, D. J., & Zhiwen Yu. (2012). Sensor-Based Activity Recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6), 790-808. doi:10.1109/tsmcc.2012.2198883

Chen, L., Nugent, C. D., & Wang, H. (2012). A Knowledge-Driven Approach to Activity Recognition in Smart Homes. IEEE Transactions on Knowledge and Data Engineering, 24(6), 961-974. doi:10.1109/tkde.2011.51

Chen, Y., Wang, J., Huang, M., & Yu, H. (2019). Cross-position activity recognition with stratified transfer learning. Pervasive and Mobile Computing, 57, 1-13. doi:10.1016/j.pmcj.2019.04.004

Cook, D., Feuz, K. D., & Krishnan, N. C. (2013). Transfer learning for activity recognition: a survey. Knowledge and Information Systems, 36(3), 537-556. doi:10.1007/s10115-013-0665-3

Dai, P., Di, H., Dong, L., Tao, L., & Xu, G. (2008). Group Interaction Analysis in Dynamic Context. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(1), 275-282. doi:10.1109/tsmcb.2007.909939

Ding, R., Li, X., Nie, L., Li, J., Si, X., Chu, D., … Zhan, D. (2018). Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition. Sensors, 19(1), 57. doi:10.3390/s19010057

Duong, T., Phung, D., Bui, H., & Venkatesh, S. (2009). Efficient duration and hierarchical modeling for human activity recognition. Artificial Intelligence, 173(7-8), 830-856. doi:10.1016/j.artint.2008.12.005

Fürnkranz, J. (1999). Artificial Intelligence Review, 13(1), 3-54. doi:10.1023/a:1006524209794

Geng, L., & Hamilton, H. J. (2006). Interestingness measures for data mining. ACM Computing Surveys, 38(3), 9. doi:10.1145/1132960.1132963

Hoey, J., Poupart, P., Bertoldi, A. von, Craig, T., Boutilier, C., & Mihailidis, A. (2010). Automated handwashing assistance for persons with dementia using video and a partially observable Markov decision process. Computer Vision and Image Understanding, 114(5), 503-519. doi:10.1016/j.cviu.2009.06.008

Hong, J., Suh, E., & Kim, S.-J. (2009). Context-aware systems: A literature review and classification. Expert Systems with Applications, 36(4), 8509-8522. doi:10.1016/j.eswa.2008.10.071

Hussein, A., Gaber, M. M., Elyan, E., & Jayne, C. (2017). Imitation Learning. ACM Computing Surveys, 50(2), 1-35. doi:10.1145/3054912

Kalra, L., Zhao, X., Soto, A. J., & Milios, E. (2013). Detection of daily living activities using a two-stage Markov model. Journal of Ambient Intelligence and Smart Environments, 5(3), 273-285. doi:10.3233/ais-130208

Kardas, K., & Cicekli, N. K. (2017). SVAS: Surveillance Video Analysis System. Expert Systems with Applications, 89, 343-361. doi:10.1016/j.eswa.2017.07.051

Krüger, F., Nyolt, M., Yordanova, K., Hein, A., & Kirste, T. (2014). Computational State Space Models for Activity and Intention Recognition. A Feasibility Study. PLoS ONE, 9(11), e109381. doi:10.1371/journal.pone.0109381

Neumann, A., Elbrechter, C., Pfeiffer-Leßmann, N., Kõiva, R., Carlmeyer, B., Rüther, S., … Ritter, H. J. (2017). «KogniChef»: A Cognitive Cooking Assistant. KI - Künstliche Intelligenz, 31(3), 273-281. doi:10.1007/s13218-017-0488-6

Papadimitriou, P., Dasdan, A., & Garcia-Molina, H. (2010). Web graph similarity for anomaly detection. Journal of Internet Services and Applications, 1(1), 19-30. doi:10.1007/s13174-010-0003-x

Peng, L., Chen, L., Ye, Z., & Zhang, Y. (2018). AROMA. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(2), 1-16. doi:10.1145/3214277

Rosen, J., Solazzo, M., Hannaford, B., & Sinanan, M. (2002). Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents’ Learning Curve Using Hidden Markov Model. Computer Aided Surgery, 7(1), 49-61. doi:10.3109/10929080209146016

Sadilek, A., & Kautz, H. (2012). Location-Based Reasoning about Complex Multi-Agent Behavior. Journal of Artificial Intelligence Research, 43, 87-133. doi:10.1613/jair.3421

Sanchez, D., Tentori, M., & Favela, J. (2008). Activity Recognition for the Smart Hospital. IEEE Intelligent Systems, 23(2), 50-57. doi:10.1109/mis.2008.18

Škrjanc, I., Andonovski, G., Ledezma, A., Sipele, O., Iglesias, J. A., & Sanchis, A. (2018). Evolving cloud-based system for the recognition of drivers’ actions. Expert Systems with Applications, 99, 231-238. doi:10.1016/j.eswa.2017.11.008

Sun, X., Kashima, H., & Ueda, N. (2013). Large-Scale Personalized Human Activity Recognition Using Online Multitask Learning. IEEE Transactions on Knowledge and Data Engineering, 25(11), 2551-2563. doi:10.1109/tkde.2012.246

Twomey, N., Diethe, T., Kull, M., Song, H., Camplani, M., Hannuna, S., et al. (2016). The sphere challenge. arXiv:1603.00797.

Voulodimos, A., Kosmopoulos, D., Vasileiou, G., Sardis, E., Anagnostopoulos, V., Lalos, C., … Varvarigou, T. (2012). A Threefold Dataset for Activity and Workflow Recognition in Complex Industrial Environments. IEEE Multimedia, 19(3), 42-52. doi:10.1109/mmul.2012.31

Wallace, C. S. (1999). Minimum Message Length and Kolmogorov Complexity. The Computer Journal, 42(4), 270-283. doi:10.1093/comjnl/42.4.270

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem