- -

Learning alternative ways of performing a task

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Learning alternative ways of performing a task

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nieves, D. es_ES
dc.contributor.author Ramírez Quintana, María José es_ES
dc.contributor.author Montserrat Aranda, Carlos es_ES
dc.contributor.author Ferri Ramírez, César es_ES
dc.contributor.author Hernández-Orallo, José es_ES
dc.date.accessioned 2021-07-01T03:32:36Z
dc.date.available 2021-07-01T03:32:36Z
dc.date.issued 2020-06-15 es_ES
dc.identifier.issn 0957-4174 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168606
dc.description.abstract [EN] A common way of learning to perform a task is to observe how it is carried out by experts. However, it is well known that for most tasks there is no unique way to perform them. This is especially noticeable the more complex the task is because factors such as the skill or the know-how of the expert may well affect the way she solves the task. In addition, learning from experts also suffers of having a small set of training examples generally coming from several experts (since experts are usually a limited and ex- pensive resource), being all of them positive examples (i.e. examples that represent successful executions of the task). Traditional machine learning techniques are not useful in such scenarios, as they require extensive training data. Starting from very few executions of the task presented as activity sequences, we introduce a novel inductive approach for learning multiple models, with each one representing an alter- native strategy of performing a task. By an iterative process based on generalisation and specialisation, we learn the underlying patterns that capture the different styles of performing a task exhibited by the examples. We illustrate our approach on two common activity recognition tasks: a surgical skills training task and a cooking domain. We evaluate the inferred models with respect to two metrics that measure how well the models represent the examples and capture the different forms of executing a task showed by the examples. We compare our results with the traditional process mining approach and show that a small set of meaningful examples is enough to obtain patterns that capture the different strategies that are followed to solve the tasks. es_ES
dc.description.sponsorship This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grants TIN2014-61716-EXP (SUPERVASION) and RTI2018-094403-B-C32, and by Generalitat Valenciana under grant PROMETEO/2019/098. David Nieves is also supported by the Spanish MINECO under FPI grant (BES-2016-078863). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Expert Systems with Applications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Task learning es_ES
dc.subject Inductive learning es_ES
dc.subject Process mining es_ES
dc.subject Identifying strategies es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Learning alternative ways of performing a task es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.eswa.2020.113263 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094403-B-C32/ES/RAZONAMIENTO FORMAL PARA TECNOLOGIAS FACILITADORAS Y EMERGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-61716-EXP/ES/SUPERVISION AUTOMATICA MEDIANTE OBSERVACION: TECNOLOGIA EXTENSIVA PARA LA ADQUISICION DE DESTREZAS DE FORMA AUTONOMA Y LA ASISTENCIA EN PROCEDIMIENTOS./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F098/ES/DeepTrust: Deep Logic Technology for Software Trustworthiness/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2016-078863/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Nieves, D.; Ramírez Quintana, MJ.; Montserrat Aranda, C.; Ferri Ramírez, C.; Hernández-Orallo, J. (2020). Learning alternative ways of performing a task. Expert Systems with Applications. 148:1-18. https://doi.org/10.1016/j.eswa.2020.113263 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.eswa.2020.113263 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 148 es_ES
dc.relation.pasarela S\402288 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references van der Aalst, W. M., Bolt, A., & van Zelst, S. J. (2017). Rapidprom: Mine your processes and not just your data. arXiv:1703.03740. es_ES
dc.description.references Van der Aalst, W. M. P., Reijers, H. A., Weijters, A. J. M. M., van Dongen, B. F., Alves de Medeiros, A. K., Song, M., & Verbeek, H. M. W. (2007). Business process mining: An industrial application. Information Systems, 32(5), 713-732. doi:10.1016/j.is.2006.05.003 es_ES
dc.description.references Adé, H., de Raedt, L., & Bruynooghe, M. (1995). Declarative bias for specific-to-general ILP systems. Machine Learning, 20(1-2), 119-154. doi:10.1007/bf00993477 es_ES
dc.description.references Ahmidi, N., Tao, L., Sefati, S., Gao, Y., Lea, C., Haro, B. B., … Hager, G. D. (2017). A Dataset and Benchmarks for Segmentation and Recognition of Gestures in Robotic Surgery. IEEE Transactions on Biomedical Engineering, 64(9), 2025-2041. doi:10.1109/tbme.2016.2647680 es_ES
dc.description.references Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action understanding as inverse planning. Cognition, 113(3), 329-349. doi:10.1016/j.cognition.2009.07.005 es_ES
dc.description.references Blum, T., Padoy, N., Feußner, H., & Navab, N. (2008). Workflow mining for visualization and analysis of surgeries. International Journal of Computer Assisted Radiology and Surgery, 3(5), 379-386. doi:10.1007/s11548-008-0239-0 es_ES
dc.description.references Camacho, R., Carreira, P., Lynce, I., & Resendes, S. (2014). An ontology-based approach to conflict resolution in Home and Building Automation Systems. Expert Systems with Applications, 41(14), 6161-6173. doi:10.1016/j.eswa.2014.04.017 es_ES
dc.description.references Caruana, R. (1997). Machine Learning, 28(1), 41-75. doi:10.1023/a:1007379606734 es_ES
dc.description.references Liming Chen, Hoey, J., Nugent, C. D., Cook, D. J., & Zhiwen Yu. (2012). Sensor-Based Activity Recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6), 790-808. doi:10.1109/tsmcc.2012.2198883 es_ES
dc.description.references Chen, L., Nugent, C. D., & Wang, H. (2012). A Knowledge-Driven Approach to Activity Recognition in Smart Homes. IEEE Transactions on Knowledge and Data Engineering, 24(6), 961-974. doi:10.1109/tkde.2011.51 es_ES
dc.description.references Chen, Y., Wang, J., Huang, M., & Yu, H. (2019). Cross-position activity recognition with stratified transfer learning. Pervasive and Mobile Computing, 57, 1-13. doi:10.1016/j.pmcj.2019.04.004 es_ES
dc.description.references Cook, D., Feuz, K. D., & Krishnan, N. C. (2013). Transfer learning for activity recognition: a survey. Knowledge and Information Systems, 36(3), 537-556. doi:10.1007/s10115-013-0665-3 es_ES
dc.description.references Dai, P., Di, H., Dong, L., Tao, L., & Xu, G. (2008). Group Interaction Analysis in Dynamic Context. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(1), 275-282. doi:10.1109/tsmcb.2007.909939 es_ES
dc.description.references Ding, R., Li, X., Nie, L., Li, J., Si, X., Chu, D., … Zhan, D. (2018). Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition. Sensors, 19(1), 57. doi:10.3390/s19010057 es_ES
dc.description.references Duong, T., Phung, D., Bui, H., & Venkatesh, S. (2009). Efficient duration and hierarchical modeling for human activity recognition. Artificial Intelligence, 173(7-8), 830-856. doi:10.1016/j.artint.2008.12.005 es_ES
dc.description.references Fürnkranz, J. (1999). Artificial Intelligence Review, 13(1), 3-54. doi:10.1023/a:1006524209794 es_ES
dc.description.references Geng, L., & Hamilton, H. J. (2006). Interestingness measures for data mining. ACM Computing Surveys, 38(3), 9. doi:10.1145/1132960.1132963 es_ES
dc.description.references Hoey, J., Poupart, P., Bertoldi, A. von, Craig, T., Boutilier, C., & Mihailidis, A. (2010). Automated handwashing assistance for persons with dementia using video and a partially observable Markov decision process. Computer Vision and Image Understanding, 114(5), 503-519. doi:10.1016/j.cviu.2009.06.008 es_ES
dc.description.references Hong, J., Suh, E., & Kim, S.-J. (2009). Context-aware systems: A literature review and classification. Expert Systems with Applications, 36(4), 8509-8522. doi:10.1016/j.eswa.2008.10.071 es_ES
dc.description.references Hussein, A., Gaber, M. M., Elyan, E., & Jayne, C. (2017). Imitation Learning. ACM Computing Surveys, 50(2), 1-35. doi:10.1145/3054912 es_ES
dc.description.references Kalra, L., Zhao, X., Soto, A. J., & Milios, E. (2013). Detection of daily living activities using a two-stage Markov model. Journal of Ambient Intelligence and Smart Environments, 5(3), 273-285. doi:10.3233/ais-130208 es_ES
dc.description.references Kardas, K., & Cicekli, N. K. (2017). SVAS: Surveillance Video Analysis System. Expert Systems with Applications, 89, 343-361. doi:10.1016/j.eswa.2017.07.051 es_ES
dc.description.references Krüger, F., Nyolt, M., Yordanova, K., Hein, A., & Kirste, T. (2014). Computational State Space Models for Activity and Intention Recognition. A Feasibility Study. PLoS ONE, 9(11), e109381. doi:10.1371/journal.pone.0109381 es_ES
dc.description.references Neumann, A., Elbrechter, C., Pfeiffer-Leßmann, N., Kõiva, R., Carlmeyer, B., Rüther, S., … Ritter, H. J. (2017). «KogniChef»: A Cognitive Cooking Assistant. KI - Künstliche Intelligenz, 31(3), 273-281. doi:10.1007/s13218-017-0488-6 es_ES
dc.description.references Papadimitriou, P., Dasdan, A., & Garcia-Molina, H. (2010). Web graph similarity for anomaly detection. Journal of Internet Services and Applications, 1(1), 19-30. doi:10.1007/s13174-010-0003-x es_ES
dc.description.references Peng, L., Chen, L., Ye, Z., & Zhang, Y. (2018). AROMA. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(2), 1-16. doi:10.1145/3214277 es_ES
dc.description.references Rosen, J., Solazzo, M., Hannaford, B., & Sinanan, M. (2002). Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents’ Learning Curve Using Hidden Markov Model. Computer Aided Surgery, 7(1), 49-61. doi:10.3109/10929080209146016 es_ES
dc.description.references Sadilek, A., & Kautz, H. (2012). Location-Based Reasoning about Complex Multi-Agent Behavior. Journal of Artificial Intelligence Research, 43, 87-133. doi:10.1613/jair.3421 es_ES
dc.description.references Sanchez, D., Tentori, M., & Favela, J. (2008). Activity Recognition for the Smart Hospital. IEEE Intelligent Systems, 23(2), 50-57. doi:10.1109/mis.2008.18 es_ES
dc.description.references Škrjanc, I., Andonovski, G., Ledezma, A., Sipele, O., Iglesias, J. A., & Sanchis, A. (2018). Evolving cloud-based system for the recognition of drivers’ actions. Expert Systems with Applications, 99, 231-238. doi:10.1016/j.eswa.2017.11.008 es_ES
dc.description.references Sun, X., Kashima, H., & Ueda, N. (2013). Large-Scale Personalized Human Activity Recognition Using Online Multitask Learning. IEEE Transactions on Knowledge and Data Engineering, 25(11), 2551-2563. doi:10.1109/tkde.2012.246 es_ES
dc.description.references Twomey, N., Diethe, T., Kull, M., Song, H., Camplani, M., Hannuna, S., et al. (2016). The sphere challenge. arXiv:1603.00797. es_ES
dc.description.references Voulodimos, A., Kosmopoulos, D., Vasileiou, G., Sardis, E., Anagnostopoulos, V., Lalos, C., … Varvarigou, T. (2012). A Threefold Dataset for Activity and Workflow Recognition in Complex Industrial Environments. IEEE Multimedia, 19(3), 42-52. doi:10.1109/mmul.2012.31 es_ES
dc.description.references Wallace, C. S. (1999). Minimum Message Length and Kolmogorov Complexity. The Computer Journal, 42(4), 270-283. doi:10.1093/comjnl/42.4.270 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem