- -

Deregulated High Affinity Copper Transport Alters Iron Homeostasis inArabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deregulated High Affinity Copper Transport Alters Iron Homeostasis inArabidopsis

Mostrar el registro completo del ítem

Perea-García, A.; Andrés-Bordería, A.; Vera Sirera, FJ.; Perez Amador, MA.; Puig, S.; Peñarrubia, L. (2020). Deregulated High Affinity Copper Transport Alters Iron Homeostasis inArabidopsis. Frontiers in Plant Science. 11:1-16. https://doi.org/10.3389/fpls.2020.01106

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168611

Ficheros en el ítem

Metadatos del ítem

Título: Deregulated High Affinity Copper Transport Alters Iron Homeostasis inArabidopsis
Autor: Perea-García, Ana Andrés-Bordería, Amparo Vera Sirera, Francisco José PEREZ AMADOR, MIGUEL ANGEL Puig, Sergi Peñarrubia, Lola
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] The present work describes the effects on iron homeostasis when copper transport was deregulated inArabidopsis thalianaby overexpressing high affinity copper transporters COPT1 and COPT3 (COPTOE). A genome-wide analysis ...[+]
Palabras clave: Arabidopsis thaliana , Copper uptake , High affinity copper importer 1 , Iron homeostasis , Metal interactions , Metal mobilization
Derechos de uso: Reconocimiento (by)
Fuente:
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2020.01106
Editorial:
Frontiers Media SA
Versión del editor: https://doi.org/10.3389/fpls.2020.01106
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-87828-C2-1-P/ES/REGULACION TRANSCRIPCIONAL Y POSTRANSCRIPCIONAL DE PROCESOS METABOLICOS DEPENDIENTES DE LA DISPONIBILIDAD DE HIERRO Y COBRE EN LEVADURAS Y PLANTAS/
Agradecimientos:
This work was supported by grant BIO2017-87828-C2-1-P from the Spanish Ministry of Economy and Competitiveness, and by FEDER funds from the European Union.
Tipo: Artículo

References

Abdel-Ghany, S. E., Burkhead, J. L., Gogolin, K. A., Andrés-Colás, N., Bodecker, J. R., Puig, S., … Pilon, M. (2005). AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Letters, 579(11), 2307-2312. doi:10.1016/j.febslet.2005.03.025

Andrés-Bordería, A., Andrés, F., Garcia-Molina, A., Perea-García, A., Domingo, C., Puig, S., & Peñarrubia, L. (2017). Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.). Plant Molecular Biology, 95(1-2), 17-32. doi:10.1007/s11103-017-0622-8

Andrés-Colás, N., Sancenón, V., Rodríguez-Navarro, S., Mayo, S., Thiele, D. J., Ecker, J. R., … Peñarrubia, L. (2006). The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. The Plant Journal, 45(2), 225-236. doi:10.1111/j.1365-313x.2005.02601.x [+]
Abdel-Ghany, S. E., Burkhead, J. L., Gogolin, K. A., Andrés-Colás, N., Bodecker, J. R., Puig, S., … Pilon, M. (2005). AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Letters, 579(11), 2307-2312. doi:10.1016/j.febslet.2005.03.025

Andrés-Bordería, A., Andrés, F., Garcia-Molina, A., Perea-García, A., Domingo, C., Puig, S., & Peñarrubia, L. (2017). Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.). Plant Molecular Biology, 95(1-2), 17-32. doi:10.1007/s11103-017-0622-8

Andrés-Colás, N., Sancenón, V., Rodríguez-Navarro, S., Mayo, S., Thiele, D. J., Ecker, J. R., … Peñarrubia, L. (2006). The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. The Plant Journal, 45(2), 225-236. doi:10.1111/j.1365-313x.2005.02601.x

Andrés-ColÁs, N., Perea-García, A., Puig, S., & Peñarrubia, L. (2010). Deregulated Copper Transport Affects Arabidopsis Development Especially in the Absence of Environmental Cycles    . Plant Physiology, 153(1), 170-184. doi:10.1104/pp.110.153676

Andrés-Colás, N., Carrió-Seguí, A., Abdel-Ghany, S. E., Pilon, M., & Peñarrubia, L. (2018). Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00910

Arnholdt-Schmitt, B., Costa, J. H., & de Melo, D. F. (2006). AOX – a functional marker for efficient cell reprogramming under stress? Trends in Plant Science, 11(6), 281-287. doi:10.1016/j.tplants.2006.05.001

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556

Bang, W. Y., Jeong, I. S., Kim, D. W., Im, C. H., Ji, C., Hwang, S. M., … Bahk, J. D. (2008). Role of Arabidopsis CHL27 Protein for Photosynthesis, Chloroplast Development and Gene Expression Profiling. Plant and Cell Physiology, 49(9), 1350-1363. doi:10.1093/pcp/pcn111

Belbin, F. E., Noordally, Z. B., Wetherill, S. J., Atkins, K. A., Franklin, K. A., & Dodd, A. N. (2016). Integration of light and circadian signals that regulate chloroplast transcription by a nuclear‐encoded sigma factor. New Phytologist, 213(2), 727-738. doi:10.1111/nph.14176

Bernal, M., Casero, D., Singh, V., Wilson, G. T., Grande, A., Yang, H., … Krämer, U. (2012). Transcriptome Sequencing Identifies SPL7-Regulated Copper Acquisition Genes FRO4/FRO5 and the Copper Dependence of Iron Homeostasis in Arabidopsis. The Plant Cell, 24(2), 738-761. doi:10.1105/tpc.111.090431

Bueso, E., Alejandro, S., Carbonell, P., Perez-Amador, M. A., Fayos, J., Bellés, J. M., … Serrano, R. (2007). The lithium tolerance of the Arabidopsiscat2mutant reveals a cross-talk between oxidative stress and ethylene. The Plant Journal, 52(6), 1052-1065. doi:10.1111/j.1365-313x.2007.03305.x

Carmona-Saez, P., Chagoyen, M., Tirado, F., Carazo, J. M., & Pascual-Montano, A. (2007). Genome Biology, 8(1), R3. doi:10.1186/gb-2007-8-1-r3

Carrió-Seguí, A., Garcia-Molina, A., Sanz, A., & Peñarrubia, L. (2014). Defective Copper Transport in the copt5 Mutant Affects Cadmium Tolerance. Plant and Cell Physiology, 56(3), 442-454. doi:10.1093/pcp/pcu180

Chen, W. W., Yang, J. L., Qin, C., Jin, C. W., Mo, J. H., Ye, T., & Zheng, S. J. (2010). Nitric Oxide Acts Downstream of Auxin to Trigger Root Ferric-Chelate Reductase Activity in Response to Iron Deficiency in Arabidopsis. Plant Physiology, 154(2), 810-819. doi:10.1104/pp.110.161109

Clifton, R., Millar, A. H., & Whelan, J. (2006). Alternative oxidases in Arabidopsis: A comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1757(7), 730-741. doi:10.1016/j.bbabio.2006.03.009

Colangelo, E. P., & Guerinot, M. L. (2004). The Essential Basic Helix-Loop-Helix Protein FIT1 Is Required for the Iron Deficiency Response. The Plant Cell, 16(12), 3400-3412. doi:10.1105/tpc.104.024315

Connolly, E. L., Fett, J. P., & Guerinot, M. L. (2002). Expression of the IRT1 Metal Transporter Is Controlled by Metals at the Levels of Transcript and Protein Accumulation. The Plant Cell, 14(6), 1347-1357. doi:10.1105/tpc.001263

Crichton, R. R., & Pierre, J.-L. (2001). BioMetals, 14(2), 99-112. doi:10.1023/a:1016710810701

Cui, Y., Chen, C.-L., Cui, M., Zhou, W.-J., Wu, H.-L., & Ling, H.-Q. (2018). Four IVa bHLH Transcription Factors Are Novel Interactors of FIT and Mediate JA Inhibition of Iron Uptake in Arabidopsis. Molecular Plant, 11(9), 1166-1183. doi:10.1016/j.molp.2018.06.005

Cuypers, A., Karen, S., Jos, R., Kelly, O., Els, K., Tony, R., … Jaco, V. (2011). The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. Journal of Plant Physiology, 168(4), 309-316. doi:10.1016/j.jplph.2010.07.010

Silva, E. M., Silva, G. F. F. e, Bidoia, D. B., Silva Azevedo, M., Jesus, F. A., Pino, L. E., … Nogueira, F. T. S. (2017). microRNA159‐targetedSlGAMYBtranscription factors are required for fruit set in tomato. The Plant Journal, 92(1), 95-109. doi:10.1111/tpj.13637

Davison, P. A., Schubert, H. L., Reid, J. D., Iorg, C. D., Heroux, A., Hill, C. P., & Hunter, C. N. (2005). Structural and Biochemical Characterization of Gun4 Suggests a Mechanism for Its Role in Chlorophyll Biosynthesis,. Biochemistry, 44(21), 7603-7612. doi:10.1021/bi050240x

Edgar, R. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207-210. doi:10.1093/nar/30.1.207

Garcia-Molina, A., Andrés-Colás, N., Perea-García, A., Neumann, U., Dodani, S. C., Huijser, P., … Puig, S. (2013). The Arabidopsis COPT6 Transport Protein Functions in Copper Distribution Under Copper-Deficient Conditions. Plant and Cell Physiology, 54(8), 1378-1390. doi:10.1093/pcp/pct088

Garcia-Molina, A., Altmann, M., Alkofer, A., Epple, P. M., Dangl, J. L., & Falter-Braun, P. (2017). LSU network hubs integrate abiotic and biotic stress responses via interaction with the superoxide dismutase FSD2. Journal of Experimental Botany, 68(5), 1185-1197. doi:10.1093/jxb/erw498

Grillet, L., Ouerdane, L., Flis, P., Hoang, M. T. T., Isaure, M.-P., Lobinski, R., … Mari, S. (2014). Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants. Journal of Biological Chemistry, 289(5), 2515-2525. doi:10.1074/jbc.m113.514828

Grillet, L., Lan, P., Li, W., Mokkapati, G., & Schmidt, W. (2018). IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nature Plants, 4(11), 953-963. doi:10.1038/s41477-018-0266-y

Gulec, S., & Collins, J. F. (2014). Molecular Mediators Governing Iron-Copper Interactions. Annual Review of Nutrition, 34(1), 95-116. doi:10.1146/annurev-nutr-071812-161215

Hindt, M. N., Akmakjian, G. Z., Pivarski, K. L., Punshon, T., Baxter, I., Salt, D. E., & Guerinot, M. L. (2017). BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana. Metallomics, 9(7), 876-890. doi:10.1039/c7mt00152e

Hirayama, T., Lei, G. J., Yamaji, N., Nakagawa, N., & Ma, J. F. (2018). The Putative Peptide Gene FEP1 Regulates Iron Deficiency Response in Arabidopsis. Plant and Cell Physiology, 59(9), 1739-1752. doi:10.1093/pcp/pcy145

Kastoori Ramamurthy, R., Xiang, Q., Hsieh, E.-J., Liu, K., Zhang, C., & Waters, B. M. (2018). New aspects of iron–copper crosstalk uncovered by transcriptomic characterization of Col-0 and the copper uptake mutant spl7 in Arabidopsis thaliana. Metallomics, 10(12), 1824-1840. doi:10.1039/c8mt00287h

Kobayashi, T., Nagasaka, S., Senoura, T., Itai, R. N., Nakanishi, H., & Nishizawa, N. K. (2013). Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nature Communications, 4(1). doi:10.1038/ncomms3792

Kobayashi, T. (2019). Understanding the Complexity of Iron Sensing and Signaling Cascades in Plants. Plant and Cell Physiology, 60(7), 1440-1446. doi:10.1093/pcp/pcz038

Kosman, D. J. (2018). The teleos of metallo-reduction and metallo-oxidation in eukaryotic iron and copper trafficking. Metallomics, 10(3), 370-377. doi:10.1039/c8mt00015h

Long, T. A., Tsukagoshi, H., Busch, W., Lahner, B., Salt, D. E., & Benfey, P. N. (2010). The bHLH Transcription Factor POPEYE Regulates Response to Iron Deficiency inArabidopsisRoots  . The Plant Cell, 22(7), 2219-2236. doi:10.1105/tpc.110.074096

López-Millán, A. F., Morales, F., Andaluz, S., Gogorcena, Y., Abadı́a, A., Rivas, J. D. L., & Abadı́a, J. (2000). Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use. Plant Physiology, 124(2), 885-898. doi:10.1104/pp.124.2.885

López-Torrejón, G., Jiménez-Vicente, E., Buesa, J. M., Hernandez, J. A., Verma, H. K., & Rubio, L. M. (2016). Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast. Nature Communications, 7(1). doi:10.1038/ncomms11426

Macadlo, L. A., Ibrahim, I. M., & Puthiyaveetil, S. (2019). Sigma factor 1 in chloroplast gene transcription and photosynthetic light acclimation. Journal of Experimental Botany, 71(3), 1029-1038. doi:10.1093/jxb/erz464

Matsumoto, F., Obayashi, T., Sasaki-Sekimoto, Y., Ohta, H., Takamiya, K., & Masuda, T. (2004). Gene Expression Profiling of the Tetrapyrrole Metabolic Pathway in Arabidopsis with a Mini-Array System  . Plant Physiology, 135(4), 2379-2391. doi:10.1104/pp.104.042408

Mittler, R., Darash-Yahana, M., Sohn, Y. S., Bai, F., Song, L., Cabantchik, I. Z., … Nechushtai, R. (2019). NEET Proteins: A New Link Between Iron Metabolism, Reactive Oxygen Species, and Cancer. Antioxidants & Redox Signaling, 30(8), 1083-1095. doi:10.1089/ars.2018.7502

Moseley, J., Quinn, J., Eriksson, M., & Merchant, S. (2000). The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. The EMBO Journal, 19(10), 2139-2151. doi:10.1093/emboj/19.10.2139

Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x

Nechushtai, R., Conlan, A. R., Harir, Y., Song, L., Yogev, O., Eisenberg-Domovich, Y., … Mittler, R. (2012). Characterization of Arabidopsis NEET Reveals an Ancient Role for NEET Proteins in Iron Metabolism. The Plant Cell, 24(5), 2139-2154. doi:10.1105/tpc.112.097634

Nevitt, T., Öhrvik, H., & Thiele, D. J. (2012). Charting the travels of copper in eukaryotes from yeast to mammals. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1823(9), 1580-1593. doi:10.1016/j.bbamcr.2012.02.011

Nogales-Cadenas, R., Carmona-Saez, P., Vazquez, M., Vicente, C., Yang, X., Tirado, F., … Pascual-Montano, A. (2009). GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Research, 37(Web Server), W317-W322. doi:10.1093/nar/gkp416

Nouet, C., Motte, P., & Hanikenne, M. (2011). Chloroplastic and mitochondrial metal homeostasis. Trends in Plant Science, 16(7), 395-404. doi:10.1016/j.tplants.2011.03.005

Discussion of spectrophotometric determination of marine-plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. (1965). Deep Sea Research and Oceanographic Abstracts, 12(4), 619. doi:10.1016/0011-7471(65)90662-5

Peñarrubia, L., Romero, P., Carrió-Seguí, A., Andrés-Bordería, A., Moreno, J., & Sanz, A. (2015). Temporal aspects of copper homeostasis and its crosstalk with hormones. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00255

Perea-García, A., Garcia-Molina, A., Andrés-Colás, N., Vera-Sirera, F., Pérez-Amador, M. A., Puig, S., & Peñarrubia, L. (2013). Arabidopsis Copper Transport Protein COPT2 Participates in the Cross Talk between Iron Deficiency Responses and Low-Phosphate Signaling    . Plant Physiology, 162(1), 180-194. doi:10.1104/pp.112.212407

Perea-García, A., Andrés-Bordería, A., Mayo de Andrés, S., Sanz, A., Davis, A. M., Davis, S. J., … Peñarrubia, L. (2015). Modulation of copper deficiency responses by diurnal and circadian rhythms inArabidopsis thaliana. Journal of Experimental Botany, 67(1), 391-403. doi:10.1093/jxb/erv474

PETIT, J.-M., BRIAT, J.-F., & LOBRÉAUX, S. (2001). Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochemical Journal, 359(3), 575. doi:10.1042/0264-6021:3590575

Pfaffl, M. W. (2002). Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), 36e-36. doi:10.1093/nar/30.9.e36

PUIG, S., ANDRÉS-COLÁS, N., GARCÍA-MOLINA, A., & PEÑARRUBIA, L. (2007). Copper and iron homeostasis inArabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant, Cell & Environment, 30(3), 271-290. doi:10.1111/j.1365-3040.2007.01642.x

Puig, S. (2014). Function and Regulation of the Plant COPT Family of High-Affinity Copper Transport Proteins. Advances in Botany, 2014, 1-9. doi:10.1155/2014/476917

Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., & V. O’Halloran, T. (1999). Undetectable Intracellular Free Copper: The Requirement of a Copper Chaperone for Superoxide Dismutase. Science, 284(5415), 805-808. doi:10.1126/science.284.5415.805

Ravet, K., & Pilon, M. (2013). Copper and Iron Homeostasis in Plants: The Challenges of Oxidative Stress. Antioxidants & Redox Signaling, 19(9), 919-932. doi:10.1089/ars.2012.5084

Ren, F., Logeman, B. L., Zhang, X., Liu, Y., Thiele, D. J., & Yuan, P. (2019). X-ray structures of the high-affinity copper transporter Ctr1. Nature Communications, 10(1). doi:10.1038/s41467-019-09376-7

Reyt, G., Boudouf, S., Boucherez, J., Gaymard, F., & Briat, J.-F. (2015). Iron- and Ferritin-Dependent Reactive Oxygen Species Distribution: Impact on Arabidopsis Root System Architecture. Molecular Plant, 8(3), 439-453. doi:10.1016/j.molp.2014.11.014

Robinson, N. J., Procter, C. M., Connolly, E. L., & Guerinot, M. L. (1999). A ferric-chelate reductase for iron uptake from soils. Nature, 397(6721), 694-697. doi:10.1038/17800

RODRIGO-MORENO, A., ANDRÉS-COLÁS, N., POSCHENRIEDER, C., GUNSÉ, B., PEÑARRUBIA, L., & SHABALA, S. (2012). Calcium- and potassium-permeable plasma membrane transporters are activated by copper inArabidopsisroot tips: linking copper transport with cytosolic hydroxyl radical production. Plant, Cell & Environment, 36(4), 844-855. doi:10.1111/pce.12020

Sancenón, V., Puig, S., Mira, H., Thiele, D. J., & Peñarrubia, L. (2003). Plant Molecular Biology, 51(4), 577-587. doi:10.1023/a:1022345507112

Sancenón, V., Puig, S., Mateu-Andrés, I., Dorcey, E., Thiele, D. J., & Peñarrubia, L. (2004). The Arabidopsis Copper Transporter COPT1 Functions in Root Elongation and Pollen Development. Journal of Biological Chemistry, 279(15), 15348-15355. doi:10.1074/jbc.m313321200

Sanz, A., Pike, S., Khan, M. A., Carrió-Seguí, À., Mendoza-Cózatl, D. G., Peñarrubia, L., & Gassmann, W. (2018). Copper uptake mechanism of Arabidopsis thaliana high-affinity COPT transporters. Protoplasma, 256(1), 161-170. doi:10.1007/s00709-018-1286-1

Selinski, J., Scheibe, R., Day, D. A., & Whelan, J. (2018). Alternative Oxidase Is Positive for Plant Performance. Trends in Plant Science, 23(7), 588-597. doi:10.1016/j.tplants.2018.03.012

Selote, D., Samira, R., Matthiadis, A., Gillikin, J. W., & Long, T. A. (2014). Iron-Binding E3 Ligase Mediates Iron Response in Plants by Targeting Basic Helix-Loop-Helix Transcription Factors  . Plant Physiology, 167(1), 273-286. doi:10.1104/pp.114.250837

Stacey, M. G., Patel, A., McClain, W. E., Mathieu, M., Remley, M., Rogers, E. E., … Stacey, G. (2007). The Arabidopsis AtOPT3 Protein Functions in Metal Homeostasis and Movement of Iron to Developing Seeds. Plant Physiology, 146(2), 323-324. doi:10.1104/pp.107.108183

Tanaka, R., & Tanaka, A. (2007). Tetrapyrrole Biosynthesis in Higher Plants. Annual Review of Plant Biology, 58(1), 321-346. doi:10.1146/annurev.arplant.57.032905.105448

Tissot, N., Robe, K., Gao, F., Grant‐Grant, S., Boucherez, J., Bellegarde, F., … Dubos, C. (2019). Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3. New Phytologist, 223(3), 1433-1446. doi:10.1111/nph.15753

Tsukagoshi, H., Busch, W., & Benfey, P. N. (2010). Transcriptional Regulation of ROS Controls Transition from Proliferation to Differentiation in the Root. Cell, 143(4), 606-616. doi:10.1016/j.cell.2010.10.020

Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498

Varotto, C., Maiwald, D., Pesaresi, P., Jahns, P., Salamini, F., & Leister, D. (2002). The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. The Plant Journal, 31(5), 589-599. doi:10.1046/j.1365-313x.2002.01381.x

Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M. L., Briat, J.-F., & Curie, C. (2002). IRT1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth. The Plant Cell, 14(6), 1223-1233. doi:10.1105/tpc.001388

Vigani, G., Maffi, D., & Zocchi, G. (2009). Iron availability affects the function of mitochondria in cucumber roots. New Phytologist, 182(1), 127-136. doi:10.1111/j.1469-8137.2008.02747.x

Wang, N., Cui, Y., Liu, Y., Fan, H., Du, J., Huang, Z., … Ling, H.-Q. (2013). Requirement and Functional Redundancy of Ib Subgroup bHLH Proteins for Iron Deficiency Responses and Uptake in Arabidopsis thaliana. Molecular Plant, 6(2), 503-513. doi:10.1093/mp/sss089

Waters, B. M., & Armbrust, L. C. (2013). Optimal copper supply is required for normal plant iron deficiency responses. Plant Signaling & Behavior, 8(12), e26611. doi:10.4161/psb.26611

Waters, B. M., McInturf, S. A., & Stein, R. J. (2012). Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana. Journal of Experimental Botany, 63(16), 5903-5918. doi:10.1093/jxb/ers239

Wofford, J. D., Bolaji, N., Dziuba, N., Outten, F. W., & Lindahl, P. A. (2019). Evidence that a respiratory shield in Escherichia coli protects a low-molecular-mass FeII pool from O2-dependent oxidation. Journal of Biological Chemistry, 294(1), 50-62. doi:10.1074/jbc.ra118.005233

Yamasaki, H., Abdel-Ghany, S. E., Cohu, C. M., Kobayashi, Y., Shikanai, T., & Pilon, M. (2007). Regulation of Copper Homeostasis by Micro-RNA in Arabidopsis. Journal of Biological Chemistry, 282(22), 16369-16378. doi:10.1074/jbc.m700138200

Yamasaki, H., Hayashi, M., Fukazawa, M., Kobayashi, Y., & Shikanai, T. (2009). SQUAMOSA Promoter Binding Protein–Like7 Is a Central Regulator for Copper Homeostasis in Arabidopsis  . The Plant Cell, 21(1), 347-361. doi:10.1105/tpc.108.060137

Yruela, I. (2013). Transition metals in plant photosynthesis. Metallomics, 5(9), 1090. doi:10.1039/c3mt00086a

Yuan, Y., Wu, H., Wang, N., Li, J., Zhao, W., Du, J., … Ling, H.-Q. (2008). FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Research, 18(3), 385-397. doi:10.1038/cr.2008.26

Zhang, H., & Krämer, U. (2018). Differential Diel Translation of Transcripts With Roles in the Transfer and Utilization of Iron-Sulfur Clusters in Arabidopsis. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01641

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem