- -

Identifying non-stationary and long-term river-aquifer interactions as a response to large climatic patterns and anthropogenic pressures using wavelet analysis (Mancha Oriental Aquifer, Spain)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identifying non-stationary and long-term river-aquifer interactions as a response to large climatic patterns and anthropogenic pressures using wavelet analysis (Mancha Oriental Aquifer, Spain)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dountcheva, Iordanka es_ES
dc.contributor.author Sanz, David es_ES
dc.contributor.author Cassiraga, Eduardo Fabián es_ES
dc.contributor.author Galabov, Vassil es_ES
dc.contributor.author Gómez-Alday, Juan José es_ES
dc.date.accessioned 2021-07-01T03:32:59Z
dc.date.available 2021-07-01T03:32:59Z
dc.date.issued 2020-12-15 es_ES
dc.identifier.issn 0885-6087 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168619
dc.description.abstract [EN] The objective of this study was to analyse periodicities and the long-term variability of monthly Jucar River-Mancha Oriental Aquifer interactions (RAI) and regionally measured precipitation (PP) with special focus on the correlations between these local hydrological variables and the large climatic patterns governing the Iberian Peninsula, represented by their teleconnection indices - the North Atlantic Oscillation index (NAOi) and the Western Mediterranean Oscillation index (WeMOi). To that end, wavelet analysis has been applied since it not only provides insight into the time-series dynamics but also permits statistical interpretation and correlation analysis. As a result, several periodicities have been detected: intermittent semi-annual periodicity in PP and the NAOi and annual periodicity in the RAI, NAOi and WeMOi time series. Long cycles (approximately 14 years) are also observed in the PP and WeMOi time series. The cross-wavelet spectra show a correlation between the RAI and the rest of the variables on the semi-annual and the annual scales, while wavelet coherence detects common behaviour with longer cycles - 5-6 years between the NAOi and the RAI and cycles of both 1-5 years and 7-10 years between PP and the RAI. Furthermore, results show that the periodicities in the teleconnection indices and precipitation propagate into the RAI with certain lead times: 3 months between the RAI and PP and 6 months between the RAI and the NAOi. The results indicate that the detected periodicities and the coherence between the studied variables could have applications in strategic planning on a river basin scale, taking into account the propagation times and the frequency scale. This methodological approach can be applied into strategic water resource planning independently of the geographical location of the hydrogeological system, the basin size and the climate region. es_ES
dc.description.sponsorship Special thanks go to the Júcar Water Authority (CHJ) and stakeholders (JCRMO) in the Mancha Oriental System for providing the necessary information. The content of this report does not represent the view of CHJ and JCRMO. This work has been funded by the research projects CGL2017-87216-C4-2-R from the National Research Program I + D + i (FEDER/Ministerio de Ciencia, Investigación y Universidades) and SBPLY/17/180501/000296 from the National Research Program I + D + i of the Junta of Communities of Castile-La Mancha. We would also like to thank Christine Laurin for the English copy editing and valued comments. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Hydrological Processes es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Exchange processes es_ES
dc.subject Intensive groundwater use es_ES
dc.subject Long-term variability es_ES
dc.subject North Atlantic Oscillation es_ES
dc.subject River-aquifer interactions es_ES
dc.subject Water resource planning es_ES
dc.subject Wavelet analysis es_ES
dc.subject Western Mediterranean Oscillation es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Identifying non-stationary and long-term river-aquifer interactions as a response to large climatic patterns and anthropogenic pressures using wavelet analysis (Mancha Oriental Aquifer, Spain) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/hyp.13934 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000296/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2017-87216-C4-2-R/ES/COEXISTENCIA ESPACIO-TEMPORAL DE PROCESOS DE ATENUACION NATURAL DE CONTAMINANTES ORGANICOS E INORGANICOS. IMPLICACIONES PARA LA GESTION DE RECURSOS HIDRICOS./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Dountcheva, I.; Sanz, D.; Cassiraga, EF.; Galabov, V.; Gómez-Alday, JJ. (2020). Identifying non-stationary and long-term river-aquifer interactions as a response to large climatic patterns and anthropogenic pressures using wavelet analysis (Mancha Oriental Aquifer, Spain). Hydrological Processes. 34(25):5134-5145. https://doi.org/10.1002/hyp.13934 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/hyp.13934 es_ES
dc.description.upvformatpinicio 5134 es_ES
dc.description.upvformatpfin 5145 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 25 es_ES
dc.relation.pasarela S\431366 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES
dc.description.references Butler, J. J., Whittemore, D. O., Wilson, B. B., & Bohling, G. C. (2018). Sustainability of aquifers supporting irrigated agriculture: a case study of the High Plains aquifer in Kansas. Water International, 43(6), 815-828. doi:10.1080/02508060.2018.1515566 es_ES
dc.description.references Cassiraga E. Sanz D. Castaño S. Álvarez O. &Sahuquillo A.(2013).Modelo de flujo subterráneo de los acuíferos de la Mancha oriental y sus relaciones con el río Júcar [groundwater model flow of the Mancha oriental aquifer and their relations with the Júcar River]. Unpublished report (pp 77). Confederación Hidrográfica del Júcar. es_ES
dc.description.references Castaño, S., Sanz, D., & Gómez-Alday, J. J. (2013). Sensitivity of a Groundwater Flow Model to Both Climatic Variations and Management Scenarios in a Semi-arid Region of SE Spain. Water Resources Management, 27(7), 2089-2101. doi:10.1007/s11269-013-0277-4 es_ES
dc.description.references Charlier, J.-B., Ladouche, B., & Maréchal, J.-C. (2015). Identifying the impact of climate and anthropic pressures on karst aquifers using wavelet analysis. Journal of Hydrology, 523, 610-623. doi:10.1016/j.jhydrol.2015.02.003 es_ES
dc.description.references Confederación Hidrográfica de Júcar. (2005).Protocol for action in situations of alert and eventual drought (in Spanish). Retrieved fromhttps://www.chj.es/es-es/medioambiente/gestionsequia/Documents/Plan%20Especial%20Alerta%20y%20Eventual%20Sequia/Protocolo_CHJ_dic2005_JG.pdf. es_ES
dc.description.references Confederación Hidrográfica de Júcar. (2010).Post‐drought report Paragraph 10 PES (in Spanish). Retrieved fromhttps://www.chj.es/es-es/medioambiente/gestionsequia/Documents/Informes%20Seguimiento/INFORME_POST_SEQUIA_2010.pdf. es_ES
dc.description.references Confederación Hidrográfica de Júcar. (2015).Júcar River basin management plan 2015–2021 (in Spanish). Júcar River Basin Authority (Demarcación hidrográfica del Júcar).Confederación Hidrográfica del Júcar. Ministry of the Environment Madrid. es_ES
dc.description.references Commission of the European Communities (CEC). (2000).Directive of the European Parliament and of the council establishing a framework for community action in the field of water policy: Joint text approved by the conciliation committee. 1997/0067(cod) C5‐0347/00. es_ES
dc.description.references Daubechies, I. (1992). Ten Lectures on Wavelets. doi:10.1137/1.9781611970104 es_ES
dc.description.references Gómez-Martínez, G., Pérez-Martín, M. A., Estrela-Monreal, T., & del-Amo, P. (2018). North Atlantic Oscillation as a Cause of the Hydrological Changes in the Mediterranean (Júcar River, Spain). Water Resources Management, 32(8), 2717-2734. doi:10.1007/s11269-018-1954-0 es_ES
dc.description.references Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6), 561-566. doi:10.5194/npg-11-561-2004 es_ES
dc.description.references Holman, I. P., Rivas-Casado, M., Bloomfield, J. P., & Gurdak, J. J. (2011). Identifying non-stationary groundwater level response to North Atlantic ocean-atmosphere teleconnection patterns using wavelet coherence. Hydrogeology Journal, 19(6), 1269-1278. doi:10.1007/s10040-011-0755-9 es_ES
dc.description.references Hurrell J. W. Kushnir Y. Ottersen G. &Visbeck M.(2003).Preface.The North Atlantic Oscillation:Climatic Significance and Environmental Impact Geophysical Monograph Series: Vii‐Viii. Retrieved fromhttps://doi.org/10.1029/gm134p0vii es_ES
dc.description.references Jones, P. D., Davies, T. D., Lister, D. H., Slonosky, V., Jónsson, T., Bärring, L., … Beck, C. (1999). Monthly mean pressure reconstructions for Europe for the 1780–1995 period. International Journal of Climatology, 19(4), 347-364. doi:10.1002/(sici)1097-0088(19990330)19:4<347::aid-joc363>3.0.co;2-s es_ES
dc.description.references Jones, P. D., Jonsson, T., & Wheeler, D. (1997). Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. International Journal of Climatology, 17(13), 1433-1450. doi:10.1002/(sici)1097-0088(19971115)17:13<1433::aid-joc203>3.0.co;2-p es_ES
dc.description.references Komasi, M., & Sharghi, S. (2019). Recognizing factors affecting decline in groundwater level using wavelet-entropy measure (case study: Silakhor plain aquifer). Journal of Hydroinformatics, 21(3), 510-522. doi:10.2166/hydro.2019.111 es_ES
dc.description.references Labat, D., Ababou, R., & Mangin, A. (2001). Introduction of Wavelet Analyses to Rainfall/Runoffs Relationship for a Karstic Basin: The Case of Licq-Atherey Karstic System (France). Ground Water, 39(4), 605-615. doi:10.1111/j.1745-6584.2001.tb02348.x es_ES
dc.description.references López J. &Frances F.(2010).Influence of the North Atlantic oscillation and the western Mediterranean oscillation in the maximum flow events in Spain. Paper presented at: International workshop advances in statistical hydrology. es_ES
dc.description.references Lopez-Bustins, J.-A., Martin-Vide, J., & Sanchez-Lorenzo, A. (2008). Iberia winter rainfall trends based upon changes in teleconnection and circulation patterns. Global and Planetary Change, 63(2-3), 171-176. doi:10.1016/j.gloplacha.2007.09.002 es_ES
dc.description.references Markovic, D., & Koch, M. (2013). Long-term variations and temporal scaling of hydroclimatic time series with focus on the German part of the Elbe River Basin. Hydrological Processes, 28(4), 2202-2211. doi:10.1002/hyp.9783 es_ES
dc.description.references Ministerio de Medio Ambiente (MMA). (2007).Orden MAM/698/2007 de 21 de Marzo Por la Que se Aprueban los Planes Especiales de Actuación en Situaciones de Alerta y Eventual Sequía en los Ámbitos de los Planes Hidrológicos de Cuencas Intercomunitarias. Boletín Oficial del Estado. Retrieved fromhttps://www.boe.es/eli/es/o/2007/03/21/mam698 es_ES
dc.description.references Mukherjee, A., Saha, D., Harvey, C. F., Taylor, R. G., Ahmed, K. M., & Bhanja, S. N. (2015). Groundwater systems of the Indian Sub-Continent. Journal of Hydrology: Regional Studies, 4, 1-14. doi:10.1016/j.ejrh.2015.03.005 es_ES
dc.description.references Ortega-Gómez, T., Pérez-Martín, M. A., & Estrela, T. (2018). Improvement of the drought indicators system in the Júcar River Basin, Spain. Science of The Total Environment, 610-611, 276-290. doi:10.1016/j.scitotenv.2017.07.250 es_ES
dc.description.references Osborn, T. J. (2006). Recent variations in the winter North Atlantic Oscillation. Weather, 61(12), 353-355. doi:10.1256/wea.190.06 es_ES
dc.description.references Osman, Y. Z., & Bruen, M. P. (2002). Modelling stream–aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW. Journal of Hydrology, 264(1-4), 69-86. doi:10.1016/s0022-1694(02)00067-7 es_ES
dc.description.references Ouachani, R., Bargaoui, Z., & Ouarda, T. (2011). Power of teleconnection patterns on precipitation and streamflow variability of upper Medjerda Basin. International Journal of Climatology, 33(1), 58-76. doi:10.1002/joc.3407 es_ES
dc.description.references Pedro-Monzonís, M., Solera, A., Ferrer, J., Estrela, T., & Paredes-Arquiola, J. (2015). A review of water scarcity and drought indexes in water resources planning and management. Journal of Hydrology, 527, 482-493. doi:10.1016/j.jhydrol.2015.05.003 es_ES
dc.description.references Puri S. &Aureli A.(2009).Atlas of Transboundary aquifers: Global maps regional cooperation and local inventories.ISARM Program. es_ES
dc.description.references Salerno, F., & Tartari, G. (2009). A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments. Journal of Hydrology, 376(1-2), 295-306. doi:10.1016/j.jhydrol.2009.07.042 es_ES
dc.description.references Sang, Y.-F., Wang, Z., & Liu, C. (2012). Discrete wavelet-based trend identification in hydrologic time series. Hydrological Processes, 27(14), 2021-2031. doi:10.1002/hyp.9356 es_ES
dc.description.references Sanz D.(2005).Contribución a la caracterización geométrica de las unidades hidrogeológicas que integran el sistema de acuíferos de la Mancha Oriental (Contribution to the geometric characterization of the hydrogeological units of the La Mancha Oriental aquifer system) Memoria para optar al grado de doctor (PhD thesis). Universidad Complutense de Madrid Facultad de Ciencias Geológicas Departamento de Geodinámica. es_ES
dc.description.references Sanz, D., Castaño, S., Cassiraga, E., Sahuquillo, A., Gómez-Alday, J. J., Peña, S., & Calera, A. (2011). Modeling aquifer–river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain). Hydrogeology Journal, 19(2), 475-487. doi:10.1007/s10040-010-0694-x es_ES
dc.description.references Sanz, D., Gómez-Alday, J. J., Castaño, S., Moratalla, A., De las Heras, J., & Martínez-Alfaro, P. E. (2009). Hydrostratigraphic framework and hydrogeological behaviour of the Mancha Oriental System (SE Spain). Hydrogeology Journal, 17(6), 1375-1391. doi:10.1007/s10040-009-0446-y es_ES
dc.description.references Sanz, D., Vos, J., Rambags, F., Hoogesteger, J., Cassiraga, E., & Gómez-Alday, J. J. (2018). The social construction and consequences of groundwater modelling: insight from the Mancha Oriental aquifer, Spain. International Journal of Water Resources Development, 35(5), 808-829. doi:10.1080/07900627.2018.1495619 es_ES
dc.description.references Torrence, C., & Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1), 61-78. doi:10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2 es_ES
dc.description.references Trigo, R. M., Pozo-Vázquez, D., Osborn, T. J., Castro-Díez, Y., Gámiz-Fortis, S., & Esteban-Parra, M. J. (2004). North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. International Journal of Climatology, 24(8), 925-944. doi:10.1002/joc.1048 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem