- -

Polymorphisms in coding and non-coding regions of rabbit (Oryctolagus cuniculus) myogenin (MyoG) gene

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Polymorphisms in coding and non-coding regions of rabbit (Oryctolagus cuniculus) myogenin (MyoG) gene

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Migdał, Łukasz es_ES
dc.contributor.author Pałka, Sylwia es_ES
dc.date.accessioned 2021-07-06T07:02:56Z
dc.date.available 2021-07-06T07:02:56Z
dc.date.issued 2021-06-30
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/168815
dc.description.abstract [EN] In animal breeding, selection based on growth is very often used, as this trait affects the profitability of animal production. Identification of  polymorphisms within the genes affecting the growth process seems to be very important. Therefore, we decided to analyse rabbit myogenin (MyoG gene) for potential polymorphic sites and their association with growth and carcass traits in Termond White (TER), Belgian Giant Grey (BGG) and crossbred New Zealand White×Belgian Giant Grey (NZW×BGG) rabbits. We found three single nucleotide polymorphisms (SNPs) – in 5’ upstream sequence g.68679476 C>T, in exon 1 – silent mutation g.68680096 T>C and g.68680097 G>A resulting in change of GTG triplet (valine) into ATG triplet (methionine). Association analysis showed that GG genotype weaning weight was statistically higher compared to GA in TER population (P=0.005), and that the hind parts for GG genotypes were heavier compared to those of GA (P=0.024), but association analysis of dissectible parts showed this was caused by higher bone weight (P=0.015). For g.68679476 C>T in NZW×BGG population, the CC genotypes for fore (678±35) and hind part (615±29) weights were heavier compared to CT (588±16 and 549±13, respectively); moreover, association analysis of dissectible parts showed that weight of dissectible meat in hind part. Unfortunately, we did not find similar associations for other analysed breeds. For g.68679476 C>T in NZWxBGG musculus longissimus lumborum pH leg after 24 h chilling (pH24L) were statistically lower for CC genotypes compared to CT (P=0.027). For g.68680097 G>A in Termond White population L* value on the hind leg after 24 h chilling (L*24H) was higher for GA genotypes compared to GG (P=0.03), while for g.68679476 C>T for musculus longissimus lumborum L* value after 24 h (L*24L) CC genotypes had higher value compared to CT (P=0.016) in BGG population. Moreover, in BGG population CT genotypes had higher weaning weight compared to CC (P=0.018). Our results show that SNPs within the MyoG gene may influence growth traits in some rabbit breeds, but the evolutionary conserved sequence may not be favourable for changes within coding sequences. For a better understanding thereof, additional analysis is required. es_ES
dc.description.sponsorship This research was financed by the National Centre for Research and Development (Poland) decision number LIDER/27/0104/L-9/17/NCBR/2018. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof World Rabbit Science es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Rabbits es_ES
dc.subject Myogenin es_ES
dc.subject Single nucleotide polymorphism es_ES
dc.subject Growth traits es_ES
dc.subject Slaughter traits es_ES
dc.title Polymorphisms in coding and non-coding regions of rabbit (Oryctolagus cuniculus) myogenin (MyoG) gene es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/wrs.2021.11830
dc.relation.projectID info:eu-repo/grantAgreement/NCBR//LIDER%2F27%2F0104%2FL-9%2F17%2FNCBR%2F2014/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Migdał, Ł.; Pałka, S. (2021). Polymorphisms in coding and non-coding regions of rabbit (Oryctolagus cuniculus) myogenin (MyoG) gene. World Rabbit Science. 29(2):69-79. https://doi.org/10.4995/wrs.2021.11830 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2021.11830 es_ES
dc.description.upvformatpinicio 69 es_ES
dc.description.upvformatpfin 79 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-8886
dc.relation.pasarela OJS\11830 es_ES
dc.contributor.funder National Centre for Research and Development, Polonia es_ES
dc.description.references Abu El-Magd M., Abo-Al-Ela G.H., El-Nahas A., Mansour A.A. 2015. SNPs of the MyoD and MyoG genes and their association with growth traits in Egyptian water buffalo (Bubalus bubalis). Indian J. Appl. Res., 3: 34-40. https://doi.org/10.15373/2249555X/DEC2013/178 es_ES
dc.description.references Anton I., Fésüs L., Zsolnai A. 2002. Simultaneous identification of two MspI polymorphisms of the porcine myogenin gene in Hungarian breeds. J. Anim. Breed. Genet., 119: 280-283. https://doi.org/10.1046/j.1439-0388.2002.00343.x es_ES
dc.description.references Anton I., Zsolnai A., Komlósi I., Király A., Fésüs L. 2006. Effect of MYOG genotypes on growth rate and production traits in Hungarian large white pigs. Acta Vet. Hung., 54: 393-397. https://doi.org/10.1556/AVet.54.2006.3.9 es_ES
dc.description.references Bhuiyan M.S.A., Kim N.K., Cho Y.M., Yoon D., Kim K.S., Jeon J.T., Lee J.H. 2009. Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livest. Prod. Sci., 126: 292-297. https://doi.org/10.1016/j.livsci.2009.05.019 es_ES
dc.description.references Blasco A., Nagy I., Hernández P. 2018. Genetics of growth, carcass and meat quality in rabbits. Meat Sci., 148: 178-185. https://doi.org/10.1016/j.meatsci.2018.06.030 es_ES
dc.description.references Bolet G., Brun J.M., Monnerot M., Abeni F., Arnal C., Arnold J., Bell D., Bergoglio G., Besenfelder U., Bosze S., Boucher S., Chanteloup N., Ducourouble M.C., Durand-Tardif M., Esteves P.J., Ferrand N., Gautier A., Haas C., Hewitt G., Jehl N., Joly T., Koehl P.F., Laube T., Lechevestrier S., Lopez M., Masoero G., Menigoz J.J., Piccinin R., Queney G., Saleil G., Surridge A., van der Loo W., Vicente J.S., Viudes de Castro M.P., Virag es_ES
dc.description.references J.S., Zimmermann J.M. 2000. Evaluation and conservation of European rabbit (Oryctolagus cuniculus) genetic resources. First results and inferences (Main paper). In Proc: 7th World Rabbit Congress, 4-7 July, 2000. Valencia, Spain. Vol A: 281-315. es_ES
dc.description.references Carneiro M., Rubin C.J., Di Palma F., Albert F.W., Alföldi J., Martinez Barrio A., Pielberg G., Rafati N., Sayyab S., Turner-Maier J., Younis S., Afonso S., Aken B., Alves J.M., Barrell D., Bolet G., Boucher S., Burbano H.A., Campos R., Chang J.L., Duranthon V., Fontanesi L., Garreau H., Heiman D., Johnson J., Mage R.G., Peng Z., Queney G., Rogel-Gaillard C., Ruffier M., Searle S., Villafuerte R., Xiong, A., Young S., Forsberg-Nilsson K., Good J.M., Lander E.S., Ferrand, N., Lindblad-Toh K., Andersson L. 2014. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Sci. J., 345: 1074-1079. https://doi.org/10.1126/science.1253714 es_ES
dc.description.references Dalle Zotte A., Cullere M., Rémignon H., Alberghini L., Paci G. 2016. Meat physical quality and muscle fibre properties of rabbit meat as affected by the sire breed, season, parity order and gender in an organic production system. World Rabbit Sci., 24: 145-154. https://doi.org/10.4995/wrs.2016.4300 es_ES
dc.description.references Hasty P., Bradley A., Morris J.H., Edmondson D.G., Venuti J.M., Olson E.N., Klein W.H. 1993. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 364: 501-506. https://doi.org/10.1038/364501a0 es_ES
dc.description.references Kuang L., Xie X., Zhang X., Lei M., Li C., Ren Y., Zheng J., Guo Z., Zhang C., Yang C., Zheng Y. 2014. Expression profiles of myostatin, myogenin, and myosin heavy chain in skeletal muscles of two rabbit breeds differing es_ES
dc.description.references in growth rate. Anim. Biotechnol., 25: 223-233. https://doi.org/10.1080/10495398.2013.865639 es_ES
dc.description.references Kapelanski W., Grajewska S., Kuryl J., Boclan M., Wyszynska-Koko J., Urbanski P. 2005. Polymorphism in coding and non coding regions of the MYOD gene family and meat quality in pigs. Fol. Biol., 53: 45-49. https://doi.org/10.3409/173491605775789506 es_ES
dc.description.references Kim J.M., Choi B.D., Kim B.C., ParkS.S., Hong K.C. 2009. Associations of the variation in the porcine myogenin gene with muscle fibre characteristics, lean meat production and meat quality traits. J. Anim. Breed. Genet., 126: 134-141. https://doi.org/10.1111/j.1439-0388.2008.00724.x es_ES
dc.description.references Kozioł K., Maj D., Bieniek J. 2015. Changes in the colour and pH of rabbit meatin the aging process. Med. Weter., 71: 104-108. es_ES
dc.description.references Mattioli S., Martino M., Ruggeri S., Roscini V., Moscati L., Dal Bosco A., Castellini C. 2016. Fattening rabbits in mobile arks: effect of housing system on in vivo oxidative status and meat quality. World Rabbit Sci., 24: 303-311. https://doi.org/10.4995/wrs.2016.4108 es_ES
dc.description.references Olson E.N. 1993. Regulation of muscle transcription by the MyoD family. The heart of the matter. Circ Res., 72: 1-6. https://doi.org/10.1161/01.RES.72.1.1 es_ES
dc.description.references Olson E.N., Klein W.H. 1994. HLH factors in muscle development: Dead lines and commitments, what to leave in and what to leave out. Genes Dev., 8: 1-8. https://doi.org/10.1101/gad.8.1.1 es_ES
dc.description.references Pałka S., Siudak Z., Kmiecik M., Kozioł K., Migdał Ł., Bieniek J. 2018. Królik belgijski olbrzym - charakterystyka rasy. Przegląd Hodowlany, 2: 31-33 [In Polish]. es_ES
dc.description.references Przybylski W., Hopkins D. 2016. Meat Quality Genetics and Environmental Factors. CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b19250 es_ES
dc.description.references Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol., 30: 2725-2729. https://doi.org/10.1093/molbev/mst197 es_ES
dc.description.references te Pas M.F., Verburg F.J., Gerritsen C.L., de Greef K.H. 2000. Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate. J. Anim. Sci. 78: 69-77. https://doi.org/10.2527/2000.78169x es_ES
dc.description.references Ramírez J.A., Oliver M.A., Pla M., Guerrero L., Arino B., Blasco A., Pascual M., Gil M. 2004. Effects of selection for growth rate on biochemical quality and texture characteristics of meat from rabbits. Meat Sci., 67: 617-624. https://doi.org/10.1016/j.meatsci.2003.12.012 es_ES
dc.description.references Soumillion A., Erkens J.H., Lenstra J.A., Rettenberger G., te Pas M.F. 1997. Genetic variation in the porcine myogenin gene locus. Mamm. Genome, 8: 564-568. https://doi.org/10.1007/s003359900504 es_ES
dc.description.references SAS (2014). SAS/STAT 13.2 User's Guide. SAS Institute Inc. Cary, NC. es_ES
dc.description.references Sun Y., Han Y. 2017. Genetic polymorphisms of myogenin gene and their associations with growth traits in the Chinese Tibetan Sheep. Kafkas Univ. Vet. Fak. Derg., 23: 253-258. https://doi.org/10.9775/kvfd.2016.16371 es_ES
dc.description.references Tang H., Thomas P.D. 2016. PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics, 32: 2230-2232. https://doi.org/10.1093/bioinformatics/btw222 es_ES
dc.description.references Tseng B.S., Cavin S.T., Hoffman E.P., Iannaccone S.T., Mancias P., Booth F.W., Butler I.J. 1999. Human bHLH Transcription Factor GeneMyogenin (MYOG): Genomic Sequence and Negative Mutation Analysisin Patients with Severe Congenital Myopathies. Genomics, 57: 419-423. https://doi.org/10.1006/geno.1998.5719 es_ES
dc.description.references Wei Y., Zhang G.X., Zhang T., Wang J.Y., Fan Q.C., Tang Y., Ding F.X., Zhang L. 2016. Myf5 and MyoG gene SNPs associated with Bian chicken growth trait. Genet. Mol. Res., 15: 15037043. https://doi.org/10.4238/gmr.15037043 es_ES
dc.description.references Xue M., Zan L.S., Gao L., Wang H.B. 2011. A novel polymorphism of the myogenin gene is associated with body measurement traits in native Chinese breeds. Genet. Mol. Res., 10: 2721-2728. https://doi.org/10.4238/2011.November.4.6 es_ES
dc.description.references Vaser R., Adusumalli S., Leng S., Sikic M., Ng P.C. 2016. SIFT missense predictions for genomes. Nat. Protoc., 11: 1-9. https://doi.org/10.1038/nprot.2015.123 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem