- -

Closed-loop control of a dual-fuel engine working with different combustion modes using in-cylinder pressure feedback

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Closed-loop control of a dual-fuel engine working with different combustion modes using in-cylinder pressure feedback

Mostrar el registro completo del ítem

Guardiola, C.; Pla Moreno, B.; Bares-Moreno, P.; Barbier, ARS. (2020). Closed-loop control of a dual-fuel engine working with different combustion modes using in-cylinder pressure feedback. International Journal of Engine Research. 21(3):484-496. https://doi.org/10.1177/1468087419835327

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169144

Ficheros en el ítem

Metadatos del ítem

Título: Closed-loop control of a dual-fuel engine working with different combustion modes using in-cylinder pressure feedback
Autor: Guardiola, Carlos Pla Moreno, Benjamín Bares-Moreno, Pau Barbier, Alvin Richard Sebastien
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] This work presents a closed-loop combustion control concept using in-cylinder pressure as a feedback in a dual-fuel combustion engine. At low load, reactivity controlled compression ignition combustion was used while ...[+]
Palabras clave: Reactivity controlled compression ignition , Dual-fuel combustion , Combustion control , In-cylinder pressure feedback , Closed-loop control
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Engine Research. (issn: 1468-0874 )
DOI: 10.1177/1468087419835327
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/1468087419835327
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TRA2016-78717-R/ES/ESTRATEGIAS DE CONTROL BASADAS EN LA INFORMACION CONTEXTUAL DEL VEHICULO PARA LA REDUCCION DEL CONSUMO DE COMBUSTIBLE Y LAS EMISIONES EN CONDICIONES REALES DE CONDUCCION/
info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F141/
Descripción: This is the author¿s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419835327.
Agradecimientos:
The author(s) disclosed receipt of the following finan-cial support for the research, authorship, and/or publi-cation of this article: The authors acknowledge the support of Spanish Ministerio de Economia, Industria y ...[+]
Tipo: Artículo

References

Kusaka, J., Sueoka, M., Takada, K., Ohga, Y., Nagasaki, T., & Daisho, Y. (2005). A basic study on a urea-selective catalytic reduction system for a medium-duty diesel engine. International Journal of Engine Research, 6(1), 11-19. doi:10.1243/146808705x7310

Hull, A., Golubkov, I., Kronberg, B., & van Stam, J. (2006). Alternative Fuel for a Standard Diesel Engine. International Journal of Engine Research, 7(1), 51-63. doi:10.1243/146808705x30549

Sung, K., Kim, J., & Reitz, R. D. (2009). Experimental study of pollutant emission reduction for near-stoichiometric diesel combustion in a three-way catalyst. International Journal of Engine Research, 10(5), 349-357. doi:10.1243/14680874jer04109 [+]
Kusaka, J., Sueoka, M., Takada, K., Ohga, Y., Nagasaki, T., & Daisho, Y. (2005). A basic study on a urea-selective catalytic reduction system for a medium-duty diesel engine. International Journal of Engine Research, 6(1), 11-19. doi:10.1243/146808705x7310

Hull, A., Golubkov, I., Kronberg, B., & van Stam, J. (2006). Alternative Fuel for a Standard Diesel Engine. International Journal of Engine Research, 7(1), 51-63. doi:10.1243/146808705x30549

Sung, K., Kim, J., & Reitz, R. D. (2009). Experimental study of pollutant emission reduction for near-stoichiometric diesel combustion in a three-way catalyst. International Journal of Engine Research, 10(5), 349-357. doi:10.1243/14680874jer04109

Johnson, T. V. (2009). Review of diesel emissions and control. International Journal of Engine Research, 10(5), 275-285. doi:10.1243/14680874jer04009

Yun, H., & Reitz, R. D. (2005). Combustion optimization in the low-temperature diesel combustion regime. International Journal of Engine Research, 6(5), 513-524. doi:10.1243/146808705x30576

Kook, S., Bae, C., & Kim, J. (2007). Diesel-fuelled homogeneous charge compression ignition engine with optimized premixing strategies. International Journal of Engine Research, 8(1), 127-137. doi:10.1243/14680874jer02506

Ogawa, H., Azuma, K., & Miyamoto, N. (2007). Combustion control and operating range expansion in an homogeneous charge compression ignition engine with suppression of low-temperature oxidation by methanol: Influence of compression ratio and octane number of main fuel. International Journal of Engine Research, 8(1), 139-145. doi:10.1243/14680874jer01606

Yao, M., Zheng, Z., & Liu, H. (2009). Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Progress in Energy and Combustion Science, 35(5), 398-437. doi:10.1016/j.pecs.2009.05.001

Reitz, R. D. (2013). Directions in internal combustion engine research. Combustion and Flame, 160(1), 1-8. doi:10.1016/j.combustflame.2012.11.002

Imtenan, S., Varman, M., Masjuki, H. H., Kalam, M. A., Sajjad, H., Arbab, M. I., & Rizwanul Fattah, I. M. (2014). Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: A review. Energy Conversion and Management, 80, 329-356. doi:10.1016/j.enconman.2014.01.020

Paykani, A., Kakaee, A.-H., Rahnama, P., & Reitz, R. D. (2015). Progress and recent trends in reactivity-controlled compression ignition engines. International Journal of Engine Research, 17(5), 481-524. doi:10.1177/1468087415593013

Hanson, R. M., Kokjohn, S. L., Splitter, D. A., & Reitz, R. D. (2010). An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine. SAE International Journal of Engines, 3(1), 700-716. doi:10.4271/2010-01-0864

Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2011). Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. International Journal of Engine Research, 12(3), 209-226. doi:10.1177/1468087411401548

Molina, S., García, A., Pastor, J. M., Belarte, E., & Balloul, I. (2015). Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy, 143, 211-227. doi:10.1016/j.apenergy.2015.01.035

Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003

Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Conversion and Management, 99, 193-209. doi:10.1016/j.enconman.2015.04.046

Benajes, J., Pastor, J. V., García, A., & Boronat, V. (2016). A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio. Energy Conversion and Management, 126, 497-508. doi:10.1016/j.enconman.2016.08.023

Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010

Shaver, G. M., Roelle, M. J., Caton, P. A., Kaahaaina, N. B., Ravi, N., Hathout, J.-P., … Gerdes, J. C. (2005). A physics-based approach to the control of homogeneous charge compression ignition engines with variable valve actuation. International Journal of Engine Research, 6(4), 361-375. doi:10.1243/146808705x30512

Caton, P. A., Song, H. H., Kaahaaina, N. B., & Edwards, C. F. (2005). Residual-effected homogeneous charge compression ignition with delayed intake-valve closing at elevated compression ratio. International Journal of Engine Research, 6(4), 399-419. doi:10.1243/146808705x30431

Dempsey, A. B., Walker, N. R., Gingrich, E., & Reitz, R. D. (2014). Comparison of Low Temperature Combustion Strategies for Advanced Compression Ignition Engines with a Focus on Controllability. Combustion Science and Technology, 186(2), 210-241. doi:10.1080/00102202.2013.858137

Ritter, D., Andert, J., Abel, D., & Albin, T. (2017). Model-based control of gasoline-controlled auto-ignition. International Journal of Engine Research, 19(2), 189-201. doi:10.1177/1468087417717399

Carlucci, A. P., Laforgia, D., Motz, S., Saracino, R., & Wenzel, S. P. (2014). Advanced closed loop combustion control of a LTC diesel engine based on in-cylinder pressure signals. Energy Conversion and Management, 77, 193-207. doi:10.1016/j.enconman.2013.08.054

Ott, T., Zurbriggen, F., Onder, C., & Guzzella, L. (2013). Cylinder Individual Feedback Control of Combustion in a Dual Fuel Engine. IFAC Proceedings Volumes, 46(21), 600-605. doi:10.3182/20130904-4-jp-2042.00080

Hanson, R., & Reitz, R. D. (2013). Transient RCCI Operation in a Light-Duty Multi-Cylinder Engine. SAE International Journal of Engines, 6(3), 1694-1705. doi:10.4271/2013-24-0050

Indrajuana, A., Bekdemir, C., Luo, X., & Willems, F. (2016). Robust Multivariable Feedback Control of Natural Gas-Diesel RCCI Combustion. IFAC-PapersOnLine, 49(11), 217-222. doi:10.1016/j.ifacol.2016.08.033

Luján, J. M., Galindo, J., Serrano, J. R., & Pla, B. (2008). A methodology to identify the intake charge cylinder-to-cylinder distribution in turbocharged direct injection Diesel engines. Measurement Science and Technology, 19(6), 065401. doi:10.1088/0957-0233/19/6/065401

Payri, F., Broatch, A., Salavert, J. M., & Martín, J. (2010). Investigation of Diesel combustion using multiple injection strategies for idling after cold start of passenger-car engines. Experimental Thermal and Fluid Science, 34(7), 857-865. doi:10.1016/j.expthermflusci.2010.01.014

Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2009). Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending. SAE International Journal of Engines, 2(2), 24-39. doi:10.4271/2009-01-2647

Desantes, J. M., Benajes, J., García, A., & Monsalve-Serrano, J. (2014). The role of the in-cylinder gas temperature and oxygen concentration over low load reactivity controlled compression ignition combustion efficiency. Energy, 78, 854-868. doi:10.1016/j.energy.2014.10.080

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem