- -

In Vitro Modeling of Non-Solid Tumors: How Far Can Tissue Engineering Go?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In Vitro Modeling of Non-Solid Tumors: How Far Can Tissue Engineering Go?

Mostrar el registro completo del ítem

Clara-Trujillo, S.; Gallego Ferrer, G.; Gómez Ribelles, JL. (2020). In Vitro Modeling of Non-Solid Tumors: How Far Can Tissue Engineering Go?. International Journal of Molecular Sciences. 21(16):1-31. https://doi.org/10.3390/ijms21165747

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169419

Ficheros en el ítem

Metadatos del ítem

Título: In Vitro Modeling of Non-Solid Tumors: How Far Can Tissue Engineering Go?
Autor: Clara-Trujillo, Sandra Gallego Ferrer, Gloria Gómez Ribelles, José Luís
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] In hematological malignancies, leukemias or myelomas, malignant cells present bone marrow (BM) homing, in which the niche contributes to tumor development and drug resistance. BM architecture, cellular and molecular ...[+]
Palabras clave: Blood cancer , Disease modeling , Bone marrow , Niche , Microenvironment , Tissue engineering , 3D models , Tumor-on-a-chip , Leukemia , Myeloma
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Molecular Sciences. (eissn: 1422-0067 )
DOI: 10.3390/ijms21165747
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ijms21165747
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F063/ES/MEDULA OSEA ARTIFICIAL PARA PERSONALIZAR EL TRATAMIENTO DE PACIENTES DE CANCERES DE SANGRE/
info:eu-repo/grantAgreement/MECD//FPU17%2F05810/
Agradecimientos:
PROMETEO/2016/063 project is acknowledged. The CIBER-BBN initiative is funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos ...[+]
Tipo: Artículo

References

Langer, R., & Vacanti, J. P. (1993). Tissue Engineering. Science, 260(5110), 920-926. doi:10.1126/science.8493529

Kelm, J. M., Lal-Nag, M., Sittampalam, G. S., & Ferrer, M. (2019). Translational in vitro research: integrating 3D drug discovery and development processes into the drug development pipeline. Drug Discovery Today, 24(1), 26-30. doi:10.1016/j.drudis.2018.07.007

Pradhan, S., Hassani, I., Clary, J. M., & Lipke, E. A. (2016). Polymeric Biomaterials for In Vitro Cancer Tissue Engineering and Drug Testing Applications. Tissue Engineering Part B: Reviews, 22(6), 470-484. doi:10.1089/ten.teb.2015.0567 [+]
Langer, R., & Vacanti, J. P. (1993). Tissue Engineering. Science, 260(5110), 920-926. doi:10.1126/science.8493529

Kelm, J. M., Lal-Nag, M., Sittampalam, G. S., & Ferrer, M. (2019). Translational in vitro research: integrating 3D drug discovery and development processes into the drug development pipeline. Drug Discovery Today, 24(1), 26-30. doi:10.1016/j.drudis.2018.07.007

Pradhan, S., Hassani, I., Clary, J. M., & Lipke, E. A. (2016). Polymeric Biomaterials for In Vitro Cancer Tissue Engineering and Drug Testing Applications. Tissue Engineering Part B: Reviews, 22(6), 470-484. doi:10.1089/ten.teb.2015.0567

Khetani, S. R., & Bhatia, S. N. (2006). Engineering tissues for in vitro applications. Current Opinion in Biotechnology, 17(5), 524-531. doi:10.1016/j.copbio.2006.08.009

Gomes, M. E., Rodrigues, M. T., Domingues, R. M. A., & Reis, R. L. (2017). Tissue Engineering and Regenerative Medicine: New Trends and Directions—A Year in Review. Tissue Engineering Part B: Reviews, 23(3), 211-224. doi:10.1089/ten.teb.2017.0081

Wang, Z., Lee, S. J., Cheng, H.-J., Yoo, J. J., & Atala, A. (2018). 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomaterialia, 70, 48-56. doi:10.1016/j.actbio.2018.02.007

Tsukamoto, Y., Akagi, T., & Akashi, M. (2020). Vascularized cardiac tissue construction with orientation by layer-by-layer method and 3D printer. Scientific Reports, 10(1). doi:10.1038/s41598-020-59371-y

Van Grunsven, L. A. (2017). 3D in vitro models of liver fibrosis. Advanced Drug Delivery Reviews, 121, 133-146. doi:10.1016/j.addr.2017.07.004

Griffith, L. G., & Swartz, M. A. (2006). Capturing complex 3D tissue physiology in vitro. Nature Reviews Molecular Cell Biology, 7(3), 211-224. doi:10.1038/nrm1858

Schenke-Layland, K., & Nerem, R. M. (2011). In vitro human tissue models — moving towards personalized regenerative medicine. Advanced Drug Delivery Reviews, 63(4-5), 195-196. doi:10.1016/j.addr.2011.05.001

Dagogo-Jack, I., & Shaw, A. T. (2017). Tumour heterogeneity and resistance to cancer therapies. Nature Reviews Clinical Oncology, 15(2), 81-94. doi:10.1038/nrclinonc.2017.166

Wright, W. E., & Shay, J. W. (2000). Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nature Medicine, 6(8), 849-851. doi:10.1038/78592

Brancato, V., Oliveira, J. M., Correlo, V. M., Reis, R. L., & Kundu, S. C. (2020). Could 3D models of cancer enhance drug screening? Biomaterials, 232, 119744. doi:10.1016/j.biomaterials.2019.119744

Riedl, A., Schlederer, M., Pudelko, K., Stadler, M., Walter, S., Unterleuthner, D., … Dolznig, H. (2016). Comparison of cancer cells cultured in 2D vs 3D reveals differences in AKT/mTOR/S6-kinase signaling and drug response. Journal of Cell Science. doi:10.1242/jcs.188102

Wu, T., & Dai, Y. (2017). Tumor microenvironment and therapeutic response. Cancer Letters, 387, 61-68. doi:10.1016/j.canlet.2016.01.043

Håkanson, M., Cukierman, E., & Charnley, M. (2014). Miniaturized pre-clinical cancer models as research and diagnostic tools. Advanced Drug Delivery Reviews, 69-70, 52-66. doi:10.1016/j.addr.2013.11.010

Radhakrishnan, J., Varadaraj, S., Dash, S. K., Sharma, A., & Verma, R. S. (2020). Organotypic cancer tissue models for drug screening: 3D constructs, bioprinting and microfluidic chips. Drug Discovery Today, 25(5), 879-890. doi:10.1016/j.drudis.2020.03.002

Broutier, L., Mastrogiovanni, G., Verstegen, M. M., Francies, H. E., Gavarró, L. M., Bradshaw, C. R., … Huch, M. (2017). Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nature Medicine, 23(12), 1424-1435. doi:10.1038/nm.4438

Drost, J., & Clevers, H. (2018). Organoids in cancer research. Nature Reviews Cancer, 18(7), 407-418. doi:10.1038/s41568-018-0007-6

Angeloni, V., Contessi, N., De Marco, C., Bertoldi, S., Tanzi, M. C., Daidone, M. G., & Farè, S. (2017). Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis. Acta Biomaterialia, 63, 306-316. doi:10.1016/j.actbio.2017.09.017

Kim, M. J., Chi, B. H., Yoo, J. J., Ju, Y. M., Whang, Y. M., & Chang, I. H. (2019). Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer. PLOS ONE, 14(10), e0223689. doi:10.1371/journal.pone.0223689

Carvalho, M. R., Barata, D., Teixeira, L. M., Giselbrecht, S., Reis, R. L., Oliveira, J. M., … Habibovic, P. (2019). Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine. Science Advances, 5(5). doi:10.1126/sciadv.aaw1317

Paolillo, Colombo, Serra, Belvisi, Papetti, Ciusani, … Schinelli. (2019). Stem-like Cancer Cells in a Dynamic 3D Culture System: A Model to Study Metastatic Cell Adhesion and Anti-cancer Drugs. Cells, 8(11), 1434. doi:10.3390/cells8111434

Lichtman, M. A. (2008). Battling the Hematological Malignancies: The 200 Years’ War. The Oncologist, 13(2), 126-138. doi:10.1634/theoncologist.2007-0228

Jagannathan-Bogdan, M., & Zon, L. I. (2013). Hematopoiesis. Development, 140(12), 2463-2467. doi:10.1242/dev.083147

Rieger, M. A., & Schroeder, T. (2012). Hematopoiesis. Cold Spring Harbor Perspectives in Biology, 4(12), a008250-a008250. doi:10.1101/cshperspect.a008250

Harris, N. L., Jaffe, E. S., Diebold, J., Flandrin, G., Muller-Hermelink, H. K., Vardiman, J., … Bloomfield, C. D. (2000). The World Health Organization Classification of Neoplasms of the Hematopoietic and Lymphoid Tissues: Report of the Clinical Advisory Committee Meeting – Airlie House, Virginia, November, 1997. The Hematology Journal, 1(1), 53-66. doi:10.1038/sj.thj.6200013

Arber, D. A., Orazi, A., Hasserjian, R., Thiele, J., Borowitz, M. J., Le Beau, M. M., … Vardiman, J. W. (2016). The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 127(20), 2391-2405. doi:10.1182/blood-2016-03-643544

Palumbo, A., & Anderson, K. (2011). Multiple Myeloma. New England Journal of Medicine, 364(11), 1046-1060. doi:10.1056/nejmra1011442

Méndez-Ferrer, S., Bonnet, D., Steensma, D. P., Hasserjian, R. P., Ghobrial, I. M., Gribben, J. G., … Krause, D. S. (2020). Bone marrow niches in haematological malignancies. Nature Reviews Cancer, 20(5), 285-298. doi:10.1038/s41568-020-0245-2

Kumar, R., Godavarthy, P. S., & Krause, D. S. (2018). The bone marrow microenvironment in health and disease at a glance. Journal of Cell Science, 131(4). doi:10.1242/jcs.201707

Galán-Díez, M., Cuesta-Domínguez, Á., & Kousteni, S. (2017). The Bone Marrow Microenvironment in Health and Myeloid Malignancy. Cold Spring Harbor Perspectives in Medicine, 8(7), a031328. doi:10.1101/cshperspect.a031328

Itkin, T., Gur-Cohen, S., Spencer, J. A., Schajnovitz, A., Ramasamy, S. K., Kusumbe, A. P., … Lapidot, T. (2016). Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature, 532(7599), 323-328. doi:10.1038/nature17624

Morikawa, T., & Takubo, K. (2017). Use of Imaging Techniques to Illuminate Dynamics of Hematopoietic Stem Cells and Their Niches. Frontiers in Cell and Developmental Biology, 5. doi:10.3389/fcell.2017.00062

Galán-Díez, M., & Kousteni, S. (2017). The Osteoblastic Niche in Hematopoiesis and Hematological Myeloid Malignancies. Current Molecular Biology Reports, 3(2), 53-62. doi:10.1007/s40610-017-0055-9

Klamer, S., & Voermans, C. (2014). The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adhesion & Migration, 8(6), 563-577. doi:10.4161/19336918.2014.968501

Walkley, C. R., Shea, J. M., Sims, N. A., Purton, L. E., & Orkin, S. H. (2007). Rb Regulates Interactions between Hematopoietic Stem Cells and Their Bone Marrow Microenvironment. Cell, 129(6), 1081-1095. doi:10.1016/j.cell.2007.03.055

Walkley, C. R., Olsen, G. H., Dworkin, S., Fabb, S. A., Swann, J., McArthur, G. A., … Purton, L. E. (2007). A Microenvironment-Induced Myeloproliferative Syndrome Caused by Retinoic Acid Receptor γ Deficiency. Cell, 129(6), 1097-1110. doi:10.1016/j.cell.2007.05.014

Xie, M., Lu, C., Wang, J., McLellan, M. D., Johnson, K. J., Wendl, M. C., … Ding, L. (2014). Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nature Medicine, 20(12), 1472-1478. doi:10.1038/nm.3733

Jaiswal, S., Fontanillas, P., Flannick, J., Manning, A., Grauman, P. V., Mar, B. G., … Ebert, B. L. (2014). Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. New England Journal of Medicine, 371(26), 2488-2498. doi:10.1056/nejmoa1408617

Genovese, G., Kähler, A. K., Handsaker, R. E., Lindberg, J., Rose, S. A., Bakhoum, S. F., … McCarroll, S. A. (2014). Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. New England Journal of Medicine, 371(26), 2477-2487. doi:10.1056/nejmoa1409405

Sala-Torra, O., Hanna, C., Loken, M. R., Flowers, M. E. D., Maris, M., Ladne, P. A., … Radich, J. P. (2006). Evidence of Donor-Derived Hematologic Malignancies after Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 12(5), 511-517. doi:10.1016/j.bbmt.2006.01.006

Ghosh, A. K., Secreto, C. R., Knox, T. R., Ding, W., Mukhopadhyay, D., & Kay, N. E. (2010). Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood, 115(9), 1755-1764. doi:10.1182/blood-2009-09-242719

Zhang, B., Chu, S., Agarwal, P., Campbell, V. L., Hopcroft, L., Jørgensen, H. G., … Bhatia, R. (2016). Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor–treated CML stem cells. Blood, 128(23), 2671-2682. doi:10.1182/blood-2015-11-679928

Schepers, K., Pietras, E. M., Reynaud, D., Flach, J., Binnewies, M., Garg, T., … Passegué, E. (2013). Myeloproliferative Neoplasia Remodels the Endosteal Bone Marrow Niche into a Self-Reinforcing Leukemic Niche. Cell Stem Cell, 13(3), 285-299. doi:10.1016/j.stem.2013.06.009

Hawkins, E. D., Duarte, D., Akinduro, O., Khorshed, R. A., Passaro, D., Nowicka, M., … Lo Celso, C. (2016). T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature, 538(7626), 518-522. doi:10.1038/nature19801

Paggetti, J., Haderk, F., Seiffert, M., Janji, B., Distler, U., Ammerlaan, W., … Moussay, E. (2015). Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood, 126(9), 1106-1117. doi:10.1182/blood-2014-12-618025

Arranz, L., Sánchez-Aguilera, A., Martín-Pérez, D., Isern, J., Langa, X., Tzankov, A., … Méndez-Ferrer, S. (2014). Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature, 512(7512), 78-81. doi:10.1038/nature13383

Dias, S., Hattori, K., Zhu, Z., Heissig, B., Choy, M., Lane, W., … Rafii, S. (2000). Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. Journal of Clinical Investigation, 106(4), 511-521. doi:10.1172/jci8978

Warburg, O. (1956). On the Origin of Cancer Cells. Science, 123(3191), 309-314. doi:10.1126/science.123.3191.309

Kreitz, J., Schönfeld, C., Seibert, M., Stolp, V., Alshamleh, I., Oellerich, T., … Serve, H. (2019). Metabolic Plasticity of Acute Myeloid Leukemia. Cells, 8(8), 805. doi:10.3390/cells8080805

Lagadinou, E. D., Sach, A., Callahan, K. P., Rossi, R. M., Neering, S., Pei, S., … Jordan, C. T. (2012). Bcl-2 Inhibitor ABT-263 Targets Oxidative Phosphorylation and Selectively Eradicates Quiescent Human Leukemia Stem Cells. Blood, 120(21), 206-206. doi:10.1182/blood.v120.21.206.206

Lutzny, G., Kocher, T., Schmidt-Supprian, M., Rudelius, M., Klein-Hitpass, L., Finch, A. J., … Ringshausen, I. (2013). Protein Kinase C-β-Dependent Activation of NF-κB in Stromal Cells Is Indispensable for the Survival of Chronic Lymphocytic Leukemia B Cells In Vivo. Cancer Cell, 23(1), 77-92. doi:10.1016/j.ccr.2012.12.003

Yao, J.-C., & Link, D. C. (2016). Concise Review: The Malignant Hematopoietic Stem Cell Niche. STEM CELLS, 35(1), 3-8. doi:10.1002/stem.2487

Spaggiari, G. M., Capobianco, A., Abdelrazik, H., Becchetti, F., Mingari, M. C., & Moretta, L. (2008). Mesenchymal stem cells inhibit natural killer–cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood, 111(3), 1327-1333. doi:10.1182/blood-2007-02-074997

Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., & Dick, J. E. (2006). Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Medicine, 12(10), 1167-1174. doi:10.1038/nm1483

Krause, D. S., Lazarides, K., von Andrian, U. H., & Van Etten, R. A. (2006). Requirement for CD44 in homing and engraftment of BCR-ABL–expressing leukemic stem cells. Nature Medicine, 12(10), 1175-1180. doi:10.1038/nm1489

Azab, A. K., Runnels, J. M., Pitsillides, C., Moreau, A.-S., Azab, F., Leleu, X., … Ghobrial, I. M. (2009). CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood, 113(18), 4341-4351. doi:10.1182/blood-2008-10-186668

Jacamo, R., Chen, Y., Wang, Z., Ma, W., Zhang, M., Spaeth, E. L., … Andreeff, M. (2014). Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance. Blood, 123(17), 2691-2702. doi:10.1182/blood-2013-06-511527

Hatano, K., Kikuchi, J., Takatoku, M., Shimizu, R., Wada, T., Ueda, M., … Ozawa, K. (2008). Bortezomib overcomes cell adhesion-mediated drug resistance through downregulation of VLA-4 expression in multiple myeloma. Oncogene, 28(2), 231-242. doi:10.1038/onc.2008.385

Bourgine, P. E., Martin, I., & Schroeder, T. (2018). Engineering Human Bone Marrow Proxies. Cell Stem Cell, 22(3), 298-301. doi:10.1016/j.stem.2018.01.002

Chramiec, A., & Vunjak-Novakovic, G. (2019). Tissue engineered models of healthy and malignant human bone marrow. Advanced Drug Delivery Reviews, 140, 78-92. doi:10.1016/j.addr.2019.04.003

Tavakol, D. N., Tratwal, J., Bonini, F., Genta, M., Campos, V., Burch, P., … Braschler, T. (2020). Injectable, scalable 3D tissue-engineered model of marrow hematopoiesis. Biomaterials, 232, 119665. doi:10.1016/j.biomaterials.2019.119665

Isern, J., Martín-Antonio, B., Ghazanfari, R., Martín, A. M., López, J. A., del Toro, R., … Méndez-Ferrer, S. (2013). Self-Renewing Human Bone Marrow Mesenspheres Promote Hematopoietic Stem Cell Expansion. Cell Reports, 3(5), 1714-1724. doi:10.1016/j.celrep.2013.03.041

Jing, D., Fonseca, A. V., Alakel, N., Fierro, F. A., Muller, K., Bornhauser, M., … Ordemann, R. (2010). Hematopoietic stem cells in co-culture with mesenchymal stromal cells - modeling the niche compartments in vitro. Haematologica, 95(4), 542-550. doi:10.3324/haematol.2009.010736

Butler, J. M., Gars, E. J., James, D. J., Nolan, D. J., Scandura, J. M., & Rafii, S. (2012). Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells. Blood, 120(6), 1344-1347. doi:10.1182/blood-2011-12-398115

Leisten, I., Kramann, R., Ventura Ferreira, M. S., Bovi, M., Neuss, S., Ziegler, P., … Schneider, R. K. (2012). 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials, 33(6), 1736-1747. doi:10.1016/j.biomaterials.2011.11.034

Raic, A., Rödling, L., Kalbacher, H., & Lee-Thedieck, C. (2014). Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Biomaterials, 35(3), 929-940. doi:10.1016/j.biomaterials.2013.10.038

Severn, C. E., Macedo, H., Eagle, M. J., Rooney, P., Mantalaris, A., & Toye, A. M. (2016). Polyurethane scaffolds seeded with CD34+ cells maintain early stem cells whilst also facilitating prolonged egress of haematopoietic progenitors. Scientific Reports, 6(1). doi:10.1038/srep32149

Mahadik, B. P., Bharadwaj, N. A. K., Ewoldt, R. H., & Harley, B. A. C. (2017). Regulating dynamic signaling between hematopoietic stem cells and niche cells via a hydrogel matrix. Biomaterials, 125, 54-64. doi:10.1016/j.biomaterials.2017.02.013

Wilkinson, A. C., Ishida, R., Kikuchi, M., Sudo, K., Morita, M., Crisostomo, R. V., … Yamazaki, S. (2019). Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature, 571(7763), 117-121. doi:10.1038/s41586-019-1244-x

Sieber, S., Wirth, L., Cavak, N., Koenigsmark, M., Marx, U., Lauster, R., & Rosowski, M. (2017). Bone marrow‐on‐a‐chip: Long‐term culture of human haematopoietic stem cells in a three‐dimensional microfluidic environment. Journal of Tissue Engineering and Regenerative Medicine, 12(2), 479-489. doi:10.1002/term.2507

Bourgine, P. E., Klein, T., Paczulla, A. M., Shimizu, T., Kunz, L., Kokkaliaris, K. D., … Martin, I. (2018). In vitro biomimetic engineering of a human hematopoietic niche with functional properties. Proceedings of the National Academy of Sciences, 115(25), E5688-E5695. doi:10.1073/pnas.1805440115

De la Puente, P., Muz, B., Gilson, R. C., Azab, F., Luderer, M., King, J., … Azab, A. K. (2015). 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma. Biomaterials, 73, 70-84. doi:10.1016/j.biomaterials.2015.09.017

Torisawa, Y., Spina, C. S., Mammoto, T., Mammoto, A., Weaver, J. C., Tat, T., … Ingber, D. E. (2014). Bone marrow–on–a–chip replicates hematopoietic niche physiology in vitro. Nature Methods, 11(6), 663-669. doi:10.1038/nmeth.2938

Reinisch, A., Hernandez, D. C., Schallmoser, K., & Majeti, R. (2017). Generation and use of a humanized bone-marrow-ossicle niche for hematopoietic xenotransplantation into mice. Nature Protocols, 12(10), 2169-2188. doi:10.1038/nprot.2017.088

Theocharides, A. P. A., Rongvaux, A., Fritsch, K., Flavell, R. A., & Manz, M. G. (2015). Humanized hemato-lymphoid system mice. Haematologica, 101(1), 5-19. doi:10.3324/haematol.2014.115212

Abarrategi, A., Mian, S. A., Passaro, D., Rouault-Pierre, K., Grey, W., & Bonnet, D. (2018). Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches. Journal of Experimental Medicine, 215(3), 729-743. doi:10.1084/jem.20172139

Rose-Zerilli, M. J. J., Gibson, J., Wang, J., Tapper, W., Davis, Z., Parker, H., … Strefford, J. C. (2016). Longitudinal copy number, whole exome and targeted deep sequencing of «good risk» IGHV-mutated CLL patients with progressive disease. Leukemia, 30(6), 1301-1310. doi:10.1038/leu.2016.10

Reinisch, A., Thomas, D., Corces, M. R., Zhang, X., Gratzinger, D., Hong, W.-J., … Majeti, R. (2016). A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nature Medicine, 22(7), 812-821. doi:10.1038/nm.4103

Vaiselbuh, S. R., Edelman, M., Lipton, J. M., & Liu, J. M. (2010). Ectopic Human Mesenchymal Stem Cell-Coated Scaffolds in NOD/SCID Mice: An In Vivo Model of the Leukemia Niche. Tissue Engineering Part C: Methods, 16(6), 1523-1531. doi:10.1089/ten.tec.2010.0179

Groen, R. W. J., Noort, W. A., Raymakers, R. A., Prins, H.-J., Aalders, L., Hofhuis, F. M., … Martens, A. C. M. (2012). Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma. Blood, 120(3), e9-e16. doi:10.1182/blood-2012-03-414920

Chen, Y., Jacamo, R., Shi, Y., Wang, R., Battula, V. L., Konoplev, S., … Andreeff, M. (2012). Human extramedullary bone marrow in mice: a novel in vivo model of genetically controlled hematopoietic microenvironment. Blood, 119(21), 4971-4980. doi:10.1182/blood-2011-11-389957

Holzapfel, B. M., Hutmacher, D. W., Nowlan, B., Barbier, V., Thibaudeau, L., Theodoropoulos, C., … Levesque, J.-P. (2015). Tissue engineered humanized bone supports human hematopoiesis in vivo. Biomaterials, 61, 103-114. doi:10.1016/j.biomaterials.2015.04.057

Bourgine, P. E., Fritsch, K., Pigeot, S., Takizawa, H., Kunz, L., Kokkaliaris, K. D., … Schroeder, T. (2019). Fate Distribution and Regulatory Role of Human Mesenchymal Stromal Cells in Engineered Hematopoietic Bone Organs. iScience, 19, 504-513. doi:10.1016/j.isci.2019.08.006

Abarrategi, A., Foster, K., Hamilton, A., Mian, S. A., Passaro, D., Gribben, J., … Bonnet, D. (2017). Versatile humanized niche model enables study of normal and malignant human hematopoiesis. Journal of Clinical Investigation, 127(2), 543-548. doi:10.1172/jci89364

Antonelli, A., Noort, W. A., Jaques, J., de Boer, B., de Jong-Korlaar, R., Brouwers-Vos, A. Z., … Schuringa, J. J. (2016). Establishing human leukemia xenograft mouse models by implanting human bone marrow–like scaffold-based niches. Blood, 128(25), 2949-2959. doi:10.1182/blood-2016-05-719021

Nefedova, Y., Landowski, T. H., & Dalton, W. S. (2003). Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia, 17(6), 1175-1182. doi:10.1038/sj.leu.2402924

Ibraheem, A., Attar-Schneider, O., Dabbah, M., Dolberg Jarchowsky, O., Tartakover Matalon, S., Lishner, M., & Drucker, L. (2019). BM-MSCs-derived ECM modifies multiple myeloma phenotype and drug response in a source-dependent manner. Translational Research, 207, 83-95. doi:10.1016/j.trsl.2019.01.003

Li, D., Lin, T. L., Lipe, B., Hopkins, R. A., Shinogle, H., & Aljitawi, O. S. (2018). A novel extracellular matrix-based leukemia model supports leukemia cells with stem cell-like characteristics. Leukemia Research, 72, 105-112. doi:10.1016/j.leukres.2018.08.012

Blanco, T. M., Mantalaris, A., Bismarck, A., & Panoskaltsis, N. (2010). The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia. Biomaterials, 31(8), 2243-2251. doi:10.1016/j.biomaterials.2009.11.094

Li, D., Lin, T. L., Zhang, D., Li, L., Hopkins, R. A., Stehno-Bittel, L., & Aljitawi, O. S. (2013). Resistance To Chemotherapy In Leukemia Cells Grown On An Extracellular Matrix-Based Leukemia Model Derived From Wharton’s Jelly. Blood, 122(21), 1388-1388. doi:10.1182/blood.v122.21.1388.1388

Li, Z.-W., & Dalton, W. S. (2006). Tumor microenvironment and drug resistance in hematologic malignancies. Blood Reviews, 20(6), 333-342. doi:10.1016/j.blre.2005.08.003

Khaldoyanidi, S. K., Goncharova, V., Mueller, B., & Schraufstatter, I. U. (2014). Hyaluronan in the Healthy and Malignant Hematopoietic Microenvironment. Hyaluronan Signaling and Turnover, 149-189. doi:10.1016/b978-0-12-800092-2.00006-x

Li, D., Chiu, G., Lipe, B., Hopkins, R. A., Lillis, J., Ashton, J. M., … Aljitawi, O. S. (2019). Decellularized Wharton jelly matrix: a biomimetic scaffold for ex vivo hematopoietic stem cell culture. Blood Advances, 3(7), 1011-1026. doi:10.1182/bloodadvances.2018019315

Katz, B.-Z. (2010). Adhesion molecules—The lifelines of multiple myeloma cells. Seminars in Cancer Biology, 20(3), 186-195. doi:10.1016/j.semcancer.2010.04.003

Dabbah, M., Attar-Schneider, O., Tartakover Matalon, S., Shefler, I., Jarchwsky Dolberg, O., Lishner, M., & Drucker, L. (2017). Microvesicles derived from normal and multiple myeloma bone marrow mesenchymal stem cells differentially modulate myeloma cells’ phenotype and translation initiation. Carcinogenesis, 38(7), 708-716. doi:10.1093/carcin/bgx045

Attar-Schneider, O., Zismanov, V., Dabbah, M., Tartakover-Matalon, S., Drucker, L., & Lishner, M. (2015). Multiple myeloma and bone marrow mesenchymal stem cells’ crosstalk: Effect on translation initiation. Molecular Carcinogenesis, 55(9), 1343-1354. doi:10.1002/mc.22378

Marcus, H., Attar-Schneider, O., Dabbah, M., Zismanov, V., Tartakover-Matalon, S., Lishner, M., & Drucker, L. (2016). Mesenchymal stem cells secretomes’ affect multiple myeloma translation initiation. Cellular Signalling, 28(6), 620-630. doi:10.1016/j.cellsig.2016.03.003

Jakubikova, J., Cholujova, D., Hideshima, T., Gronesova, P., Soltysova, A., Harada, T., … Anderson, K. C. (2016). A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: biologic and clinical applications. Oncotarget, 7(47), 77326-77341. doi:10.18632/oncotarget.12643

Bonnans, C., Chou, J., & Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology, 15(12), 786-801. doi:10.1038/nrm3904

Lu, P., Takai, K., Weaver, V. M., & Werb, Z. (2011). Extracellular Matrix Degradation and Remodeling in Development and Disease. Cold Spring Harbor Perspectives in Biology, 3(12), a005058-a005058. doi:10.1101/cshperspect.a005058

Wolanska, K. I., & Morgan, M. R. (2015). Fibronectin remodelling: cell-mediated regulation of the microenvironment. Biochemical Society Transactions, 43(1), 122-128. doi:10.1042/bst20140313

Frantz, C., Stewart, K. M., & Weaver, V. M. (2010). The extracellular matrix at a glance. Journal of Cell Science, 123(24), 4195-4200. doi:10.1242/jcs.023820

Mohammadi, H., & Sahai, E. (2018). Mechanisms and impact of altered tumour mechanics. Nature Cell Biology, 20(7), 766-774. doi:10.1038/s41556-018-0131-2

Madl, C. M., LeSavage, B. L., Dewi, R. E., Dinh, C. B., Stowers, R. S., Khariton, M., … Heilshorn, S. C. (2017). Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nature Materials, 16(12), 1233-1242. doi:10.1038/nmat5020

Clara-Trujillo, S., Marín-Payá, J. C., Cordón, L., Sempere, A., Gallego Ferrer, G., & Gómez Ribelles, J. L. (2019). Biomimetic microspheres for 3D mesenchymal stem cell culture and characterization. Colloids and Surfaces B: Biointerfaces, 177, 68-76. doi:10.1016/j.colsurfb.2019.01.050

Salmerón-Sánchez, M., Rico, P., Moratal, D., Lee, T. T., Schwarzbauer, J. E., & García, A. J. (2011). Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 32(8), 2099-2105. doi:10.1016/j.biomaterials.2010.11.057

Karamichos, D., Skinner, J., Brown, R., & Mudera, V. (2008). Matrix stiffness and serum concentration effects matrix remodelling and ECM regulatory genes of human bone marrow stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2(2-3), 97-105. doi:10.1002/term.69

Haase, K., & Kamm, R. D. (2017). Advances in on-chip vascularization. Regenerative Medicine, 12(3), 285-302. doi:10.2217/rme-2016-0152

Kannan, R. Y., Salacinski, H. J., Sales, K., Butler, P., & Seifalian, A. M. (2005). The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review. Biomaterials, 26(14), 1857-1875. doi:10.1016/j.biomaterials.2004.07.006

Chung, S., Sudo, R., Mack, P. J., Wan, C.-R., Vickerman, V., & Kamm, R. D. (2009). Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip, 9(2), 269-275. doi:10.1039/b807585a

Moya, M. L., Hsu, Y.-H., Lee, A. P., Hughes, C. C. W., & George, S. C. (2013). In Vitro Perfused Human Capillary Networks. Tissue Engineering Part C: Methods, 19(9), 730-737. doi:10.1089/ten.tec.2012.0430

Pelletier, L., Angonin, R., Regnard, J., Fellmann, D., & Charbord, P. (2002). Human bone marrow angiogenesis: in vitro modulation by substance P and neurokinin A. British Journal of Haematology, 119(4), 1083-1089. doi:10.1046/j.1365-2141.2002.03969.x

Lin, C. H. S., Kaushansky, K., & Zhan, H. (2016). JAK2V617F-mutant vascular niche contributes to JAK2V617F clonal expansion in myeloproliferative neoplasms. Blood Cells, Molecules, and Diseases, 62, 42-48. doi:10.1016/j.bcmd.2016.09.004

Koike, N., Fukumura, D., Gralla, O., Au, P., Schechner, J. S., & Jain, R. K. (2004). Creation of long-lasting blood vessels. Nature, 428(6979), 138-139. doi:10.1038/428138a

Laroche, M., Brousset, P., Ludot, I., Mazieres, B., Thiechart, M., & Attal, M. (2001). Increased vascularization in myeloma. European Journal of Haematology, 66(2), 89-93. doi:10.1034/j.1600-0609.2001.00191.x

Lim, S. T., & Levine, A. M. (2005). Angiogenesis and hematological malignancies. Hematology, 10(1), 11-24. doi:10.1080/10245330400018409

De la Puente, P., & Azab, A. K. (2016). 3D tissue-engineered bone marrow: what does this mean for the treatment of multiple myeloma? Future Oncology, 12(13), 1545-1547. doi:10.2217/fon-2016-0057

Ouyang, L., Armstrong, J. P. K., Salmeron‐Sanchez, M., & Stevens, M. M. (2020). Assembling Living Building Blocks to Engineer Complex Tissues. Advanced Functional Materials, 30(26), 1909009. doi:10.1002/adfm.201909009

Costa, M. H. G., de Soure, A. M., Cabral, J. M. S., Ferreira, F. C., & da Silva, C. L. (2017). Hematopoietic Niche - Exploring Biomimetic Cues to Improve the Functionality of Hematopoietic Stem/Progenitor Cells. Biotechnology Journal, 13(2), 1700088. doi:10.1002/biot.201700088

Mahadik, B. P., Pedron Haba, S., Skertich, L. J., & Harley, B. A. C. (2015). The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel. Biomaterials, 67, 297-307. doi:10.1016/j.biomaterials.2015.07.042

Gottschling, S., Saffrich, R., Seckinger, A., Krause, U., Horsch, K., Miesala, K., & Ho, A. D. (2006). Human Mesenchymal Stromal Cells Regulate Initial Self-Renewing Divisions of Hematopoietic Progenitor Cells by a β1 -Integrin-Dependent Mechanism. STEM CELLS, 25(3), 798-806. doi:10.1634/stemcells.2006-0513

Sart, S., Agathos, S. N., & Li, Y. (2013). Engineering stem cell fate with biochemical and biomechanical properties of microcarriers. Biotechnology Progress, 29(6), 1354-1366. doi:10.1002/btpr.1825

Birmingham, E., Niebur, G., McHugh, P., Shaw, G., Barry, F., & McNamara, L. (2012). Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. European Cells and Materials, 23, 13-27. doi:10.22203/ecm.v023a02

Persson, M., Lehenkari, P. P., Berglin, L., Turunen, S., Finnilä, M. A. J., Risteli, J., … Tuukkanen, J. (2018). Osteogenic Differentiation of Human Mesenchymal Stem cells in a 3D Woven Scaffold. Scientific Reports, 8(1). doi:10.1038/s41598-018-28699-x

Anderson, H. J., Sahoo, J. K., Ulijn, R. V., & Dalby, M. J. (2016). Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell Behavior. Frontiers in Bioengineering and Biotechnology, 4. doi:10.3389/fbioe.2016.00038

Curran, J. M., Stokes, R., Irvine, E., Graham, D., Amro, N. A., Sanedrin, R. G., … Hunt, J. A. (2010). Introducing dip pen nanolithography as a tool for controlling stem cell behaviour: unlocking the potential of the next generation of smart materials in regenerative medicine. Lab Chip, 10(13), 1662-1670. doi:10.1039/c004149a

Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., … Oreffo, R. O. C. (2007). The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials, 6(12), 997-1003. doi:10.1038/nmat2013

Fares, I., Chagraoui, J., Gareau, Y., Gingras, S., Ruel, R., Mayotte, N., … Sauvageau, G. (2014). Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science, 345(6203), 1509-1512. doi:10.1126/science.1256337

Pawitan, J. A. (2014). Prospect of Stem Cell Conditioned Medium in Regenerative Medicine. BioMed Research International, 2014, 1-14. doi:10.1155/2014/965849

Shamir, M., Bar-On, Y., Phillips, R., & Milo, R. (2016). SnapShot: Timescales in Cell Biology. Cell, 164(6), 1302-1302.e1. doi:10.1016/j.cell.2016.02.058

Albeck, J. G., Burke, J. M., Spencer, S. L., Lauffenburger, D. A., & Sorger, P. K. (2008). Modeling a Snap-Action, Variable-Delay Switch Controlling Extrinsic Cell Death. PLoS Biology, 6(12), e299. doi:10.1371/journal.pbio.0060299

Morgan, M. M., Johnson, B. P., Livingston, M. K., Schuler, L. A., Alarid, E. T., Sung, K. E., & Beebe, D. J. (2016). Personalized in vitro cancer models to predict therapeutic response: Challenges and a framework for improvement. Pharmacology & Therapeutics, 165, 79-92. doi:10.1016/j.pharmthera.2016.05.007

Letai, A. (2017). Functional precision cancer medicine—moving beyond pure genomics. Nature Medicine, 23(9), 1028-1035. doi:10.1038/nm.4389

Snijder, B., Vladimer, G. I., Krall, N., Miura, K., Schmolke, A.-S., Kornauth, C., … Superti-Furga, G. (2017). Image-based ex-vivo drug screening for patients with aggressive haematological malignancies: interim results from a single-arm, open-label, pilot study. The Lancet Haematology, 4(12), e595-e606. doi:10.1016/s2352-3026(17)30208-9

Pemovska, T., Kontro, M., Yadav, B., Edgren, H., Eldfors, S., Szwajda, A., … Wennerberg, K. (2013). Individualized Systems Medicine Strategy to Tailor Treatments for Patients with Chemorefractory Acute Myeloid Leukemia. Cancer Discovery, 3(12), 1416-1429. doi:10.1158/2159-8290.cd-13-0350

Bonolo de Campos, C., Meurice, N., Petit, J. L., Polito, A. N., Zhu, Y. X., Wang, P., … Stewart, A. K. (2020). «Direct to Drug» screening as a precision medicine tool in multiple myeloma. Blood Cancer Journal, 10(5). doi:10.1038/s41408-020-0320-7

Silva, A., Silva, M. C., Sudalagunta, P., Distler, A., Jacobson, T., Collins, A., … Shain, K. H. (2017). An Ex Vivo Platform for the Prediction of Clinical Response in Multiple Myeloma. Cancer Research, 77(12), 3336-3351. doi:10.1158/0008-5472.can-17-0502

Xu, X., Farach-Carson, M. C., & Jia, X. (2014). Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnology Advances, 32(7), 1256-1268. doi:10.1016/j.biotechadv.2014.07.009

Sontheimer-Phelps, A., Hassell, B. A., & Ingber, D. E. (2019). Modelling cancer in microfluidic human organs-on-chips. Nature Reviews Cancer, 19(2), 65-81. doi:10.1038/s41568-018-0104-6

McMurray, R. J., Gadegaard, N., Tsimbouri, P. M., Burgess, K. V., McNamara, L. E., Tare, R., … Dalby, M. J. (2011). Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nature Materials, 10(8), 637-644. doi:10.1038/nmat3058

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem