- -

Improved formulation of the latent variable model inversion¿based optimization problem for quality by design applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improved formulation of the latent variable model inversion¿based optimization problem for quality by design applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Palací-López, Daniel es_ES
dc.contributor.author Villalba-Torán, Pedro Miguel es_ES
dc.contributor.author Facco, Pierantonio es_ES
dc.contributor.author Barolo, Massimiliano es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.date.accessioned 2021-07-21T03:31:35Z
dc.date.available 2021-07-21T03:31:35Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 0886-9383 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169648
dc.description.abstract [EN] Latent variable regression model (LVRM) inversion is a relevant tool for finding, if they exist, different combinations of manufacturing conditions that yield the desired process outputs. Finding the best manufacturing conditions can be done by optimizing an appropriately formulated objective function using nonlinear programming. To this end, different formulations of the optimization problem based on LVRM inversion have been proposed in the literatura that allow the use of happenstance data (eg, historical data) for this purpose, present lower computational costs than optimizing in the space of the original variables, and guarantee that the solution will conform to the correlation structure of available data from the past. However, these approaches, as presented, suffer from some limitations, such as having to actively modify the constraints imposed on the solution to achieve different sets of conditions to those available in the LVRM calibration dataset, or the lack of a standardized approach for optimizing a linear combination of variables. Furthermore, when minimizing or maximizing one or more outputs, a severe handicap is also present related to the definition of arbitrarily low or high "desired" values. This paper aims at tackling all of these issues. The resulting proposed formulation of the optimization problem is illustrated with three case studies. es_ES
dc.description.sponsorship Agencia Estatal de Investigacion, Grant/Award Number: DPI2017-82896-C2-1-R; European Regional Development Fund; Ministerio de Economia, Industria y Competitividad, Gobierno de Espana; Universitat Politecnica de Valencia, Grant/Award Number: Erasmus 2014.93231 es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Chemometrics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Latent variable modelling es_ES
dc.subject Latent variable model inversion es_ES
dc.subject Optimization in the latent space es_ES
dc.subject Partial least-squares (PLS) es_ES
dc.subject Quality by design (QbD) es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Improved formulation of the latent variable model inversion¿based optimization problem for quality by design applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/CEM.3230 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//2014.93231/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-82896-C2-1-R/ES/DISEÑO, CARACTERIZACION Y AJUSTE OPTIMO DE BIOCIRCUITOS SINTETICOS PARA BIOPRODUCCION CON CONTROL DE CARGA METABOLICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Palací-López, D.; Villalba-Torán, PM.; Facco, P.; Barolo, M.; Ferrer, A. (2020). Improved formulation of the latent variable model inversion¿based optimization problem for quality by design applications. Journal of Chemometrics. 34(6):1-18. https://doi.org/10.1002/CEM.3230 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/CEM.3230 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\419380 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references FDA.Pharmaceutical CGMPs for the 21s Century—A Risk‐Based Approach; 2004. es_ES
dc.description.references Liu, J. J., & MacGregor, J. F. (2005). Modeling and Optimization of Product Appearance:  Application to Injection-Molded Plastic Panels. Industrial & Engineering Chemistry Research, 44(13), 4687-4696. doi:10.1021/ie0492101 es_ES
dc.description.references Bonvin, D., Georgakis, C., Pantelides, C. C., Barolo, M., Grover, M. A., Rodrigues, D., … Dochain, D. (2016). Linking Models and Experiments. Industrial & Engineering Chemistry Research, 55(25), 6891-6903. doi:10.1021/acs.iecr.5b04801 es_ES
dc.description.references MontgomeryDC.Applied Statistics and Probability for Engineers Third Edition; 2003; Vol. 37. es_ES
dc.description.references MacGregorJF.Empirical Models for Analyzing “Big” Data‐What´s the Difference. InSpring AIChE Conference; Orlando Florida USA 2018. es_ES
dc.description.references Liu, Z., Bruwer, M.-J., MacGregor, J. F., Rathore, S. S. S., Reed, D. E., & Champagne, M. J. (2011). Modeling and Optimization of a Tablet Manufacturing Line. Journal of Pharmaceutical Innovation, 6(3), 170-180. doi:10.1007/s12247-011-9112-8 es_ES
dc.description.references MacGregor, J. F., Bruwer, M. J., Miletic, I., Cardin, M., & Liu, Z. (2015). Latent Variable Models and Big Data in the Process Industries. IFAC-PapersOnLine, 48(8), 520-524. doi:10.1016/j.ifacol.2015.09.020 es_ES
dc.description.references Jaeckle, C. M., & MacGregor, J. F. (2000). Industrial applications of product design through the inversion of latent variable models. Chemometrics and Intelligent Laboratory Systems, 50(2), 199-210. doi:10.1016/s0169-7439(99)00058-1 es_ES
dc.description.references García-Muñoz, S., Kourti, T., MacGregor, J. F., Apruzzese, F., & Champagne, M. (2006). Optimization of Batch Operating Policies. Part I. Handling Multiple Solutions#. Industrial & Engineering Chemistry Research, 45(23), 7856-7866. doi:10.1021/ie060314g es_ES
dc.description.references Tomba, E., Barolo, M., & García-Muñoz, S. (2012). General Framework for Latent Variable Model Inversion for the Design and Manufacturing of New Products. Industrial & Engineering Chemistry Research, 51(39), 12886-12900. doi:10.1021/ie301214c es_ES
dc.description.references Facco, P., Dal Pastro, F., Meneghetti, N., Bezzo, F., & Barolo, M. (2015). Bracketing the Design Space within the Knowledge Space in Pharmaceutical Product Development. Industrial & Engineering Chemistry Research, 54(18), 5128-5138. doi:10.1021/acs.iecr.5b00863 es_ES
dc.description.references Bano, G., Facco, P., Bezzo, F., & Barolo, M. (2018). Probabilistic Design space determination in pharmaceutical product development: A Bayesian/latent variable approach. AIChE Journal, 64(7), 2438-2449. doi:10.1002/aic.16133 es_ES
dc.description.references Palací-López, D., Facco, P., Barolo, M., & Ferrer, A. (2019). New tools for the design and manufacturing of new products based on Latent Variable Model Inversion. Chemometrics and Intelligent Laboratory Systems, 194, 103848. doi:10.1016/j.chemolab.2019.103848 es_ES
dc.description.references MacGregor, J. F., & Bruwer, M.-J. (2008). A Framework for the Development of Design and Control Spaces. Journal of Pharmaceutical Innovation, 3(1), 15-22. doi:10.1007/s12247-008-9023-5 es_ES
dc.description.references Jaeckle, C., & Macgregor, J. (1996). Product design through multivariate statistical analysis of process data. Computers & Chemical Engineering, 20, S1047-S1052. doi:10.1016/0098-1354(96)00182-2 es_ES
dc.description.references Lakshminarayanan, S., Fujii, H., Grosman, B., Dassau, E., & Lewin, D. R. (2000). New product design via analysis of historical databases. Computers & Chemical Engineering, 24(2-7), 671-676. doi:10.1016/s0098-1354(00)00406-3 es_ES
dc.description.references García-Muñoz, S., MacGregor, J. F., Neogi, D., Latshaw, B. E., & Mehta, S. (2008). Optimization of Batch Operating Policies. Part II. Incorporating Process Constraints and Industrial Applications. Industrial & Engineering Chemistry Research, 47(12), 4202-4208. doi:10.1021/ie071437j es_ES
dc.description.references Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. doi:10.1016/s0169-7439(01)00155-1 es_ES
dc.description.references Ferrer, A. (2007). Multivariate Statistical Process Control Based on Principal Component Analysis (MSPC-PCA): Some Reflections and a Case Study in an Autobody Assembly Process. Quality Engineering, 19(4), 311-325. doi:10.1080/08982110701621304 es_ES
dc.description.references Feltens, J. (2008). Vector method to compute the Cartesian (X, Y, Z) to geodetic ( $${\phi}$$ , λ, h) transformation on a triaxial ellipsoid. Journal of Geodesy, 83(2), 129-137. doi:10.1007/s00190-008-0246-5 es_ES
dc.description.references Arteaga, F., & Ferrer, A. (2013). Building covariance matrices with the desired structure. Chemometrics and Intelligent Laboratory Systems, 127, 80-88. doi:10.1016/j.chemolab.2013.06.003 es_ES
dc.description.references Arteaga, F., & Ferrer, A. (2010). How to simulate normal data sets with the desired correlation structure. Chemometrics and Intelligent Laboratory Systems, 101(1), 38-42. doi:10.1016/j.chemolab.2009.12.003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem