- -

Design, Optimization, and Analysis of Supersonic Radial Turbines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design, Optimization, and Analysis of Supersonic Radial Turbines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Inhestern, Lukas Benjamin es_ES
dc.contributor.author Braun, James es_ES
dc.contributor.author Paniagua, Guillermo es_ES
dc.contributor.author Serrano, J.R. es_ES
dc.date.accessioned 2021-07-24T03:33:28Z
dc.date.available 2021-07-24T03:33:28Z
dc.date.issued 2020-03-01 es_ES
dc.identifier.issn 0742-4795 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170079
dc.description.abstract [EN] New compact engine architectures such as pressure gain combustion require ad hoc turbomachinery to ensure an adequate range of operation with high performance. A critical factor for supersonic turbines is to ensure the starting of the flow passages, which limits the flow turning and airfoil thickness. Radial outflow turbines inherently increase the cross section along the flow path, which holds great potential for high turning of supersonic flow with a low stage number and guarantees a compact design. First, the preliminary design space is described. Afterward a differential evolution multi-objective optimization with 12 geometrical design parameters is deducted. With the design tool autoblade 10.1, 768 geometries were generated and hub, shroud, and blade camber line were designed by means of Bezier curves. Outlet radius, passage height, and axial location of the outlet were design variables as well. Structured meshes with around 3.7 x 10(6) cells per passage were generated. Steady three-dimensional (3D) Reynolds-averaged Navier-Stokes (RANS) simulations, enclosed by the k-omega shear stress transport turbulence model were solved by the commercial solver CFD++. The geometry was optimized toward low entropy and high-power output. To prove the functionality of the new turbine concept and optimization, a full wheel unsteady RANS simulation of the optimized geometry exposed to a nozzled rotating detonation combustor (RDC) has been performed and the advantageous flow patterns of the optimization were also observed during transient operation. es_ES
dc.description.sponsorship National Energy Technology Laboratory (Faculty Research Participation Program) (Funder ID: 10.13039/100013165). Spanish Ministry of Economy and Competitiveness (Grant No. TRA2016-7918-R). Universitat Politecnica de Valencia (Travel Grant). U.S. Department of Energy (Part-Time Faculty Appointment, Funder ID: 10.13039/100000015) es_ES
dc.language Inglés es_ES
dc.publisher ASME International es_ES
dc.relation.ispartof Journal of Engineering for Gas Turbines and Power es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Design, Optimization, and Analysis of Supersonic Radial Turbines es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1115/1.4044972 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2016-79185-R/ES/DESARROLLO DE HERRAMIENTAS EXPERIMENTALES Y COMPUTACIONALES PARA LA CARACTERIZACION DE SISTEMAS DE POST-TRATAMIENTO DE GASES DE ESCAPE EN MOTORES DE ENCENDIDO POR COMPRESION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Inhestern, LB.; Braun, J.; Paniagua, G.; Serrano, J. (2020). Design, Optimization, and Analysis of Supersonic Radial Turbines. Journal of Engineering for Gas Turbines and Power. 142(3):1-12. https://doi.org/10.1115/1.4044972 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1115/1.4044972 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 142 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\408263 es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder National Energy Technology Laboratory, EEUU es_ES
dc.description.references Sousa, J., Braun, J., & Paniagua, G. (2017). Development of a fast evaluation tool for rotating detonation combustors. Applied Mathematical Modelling, 52, 42-52. doi:10.1016/j.apm.2017.07.019 es_ES
dc.description.references Heiser, W. H., & Pratt, D. T. (2002). Thermodynamic Cycle Analysis of Pulse Detonation Engines. Journal of Propulsion and Power, 18(1), 68-76. doi:10.2514/2.5899 es_ES
dc.description.references Braun, J., Saracoglu, B. H., & Paniagua, G. (2017). Unsteady Performance of Rotating Detonation Engines with Different Exhaust Nozzles. Journal of Propulsion and Power, 33(1), 121-130. doi:10.2514/1.b36164 es_ES
dc.description.references Nakagami, S., Matsuoka, K., Kasahara, J., Kumazawa, Y., Fujii, J., Matsuo, A., & Funaki, I. (2017). Experimental Visualization of the Structure of Rotating Detonation Waves in a Disk-Shaped Combustor. Journal of Propulsion and Power, 33(1), 80-88. doi:10.2514/1.b36084 es_ES
dc.description.references Zhou, R., & Wang, J.-P. (2013). Numerical investigation of shock wave reflections near the head ends of rotating detonation engines. Shock Waves, 23(5), 461-472. doi:10.1007/s00193-013-0440-0 es_ES
dc.description.references Fievisohn, R. T., & Yu, K. H. (2017). Steady-State Analysis of Rotating Detonation Engine Flowfields with the Method of Characteristics. Journal of Propulsion and Power, 33(1), 89-99. doi:10.2514/1.b36103 es_ES
dc.description.references Paniagua, G., Iorio, M. C., Vinha, N., & Sousa, J. (2014). Design and analysis of pioneering high supersonic axial turbines. International Journal of Mechanical Sciences, 89, 65-77. doi:10.1016/j.ijmecsci.2014.08.014 es_ES
dc.description.references Sousa, J., Paniagua, G., & Collado Morata, E. (2017). Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor. Applied Energy, 195, 247-256. doi:10.1016/j.apenergy.2017.03.045 es_ES
dc.description.references Liu, Z., Braun, J., & Paniagua, G. (2018). Characterization of a Supersonic Turbine Downstream of a Rotating Detonation Combustor. Journal of Engineering for Gas Turbines and Power, 141(3). doi:10.1115/1.4040815 es_ES
dc.description.references Paniagua, G., Yasa, T., de la Loma, A., Castillon, L., & Coton, T. (2008). Unsteady Strong Shock Interactions in a Transonic Turbine: Experimental and Numerical Analysis. Journal of Propulsion and Power, 24(4), 722-731. doi:10.2514/1.34774 es_ES
dc.description.references Verstraete, T., Alsalihi, Z., & Van den Braembussche, R. A. (2010). Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications. Journal of Turbomachinery, 132(3). doi:10.1115/1.3144162 es_ES
dc.description.references Braun, J., Sousa, J., & Pekardan, C. (2017). Aerodynamic Design and Analysis of the Hyperloop. AIAA Journal, 55(12), 4053-4060. doi:10.2514/1.j055634 es_ES
dc.description.references Anand, V., & Gutmark, E. (2018). Rotating Detonation Combustor Research at the University of Cincinnati. Flow, Turbulence and Combustion, 101(3), 869-893. doi:10.1007/s10494-018-9934-2 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem