- -

Simulation of Harmonic Oscillators on the Lattice

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simulation of Harmonic Oscillators on the Lattice

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tung, Michael Ming-Sha es_ES
dc.contributor.author Ibáñez González, Jacinto Javier es_ES
dc.contributor.author Defez Candel, Emilio es_ES
dc.contributor.author Sastre, Jorge es_ES
dc.date.accessioned 2021-07-27T03:37:59Z
dc.date.available 2021-07-27T03:37:59Z
dc.date.issued 2020-09-30 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170283
dc.description.abstract [EN] This work deals with the simulation of a two¿dimensional ideal lattice having simple tetragonal geometry. The harmonic character of the oscillators give rise to a system of second¿order linear differential equations, which can be recast into matrix form. The explicit solutions which govern the dynamics of this system can be expressed in terms of matrix trigonometric functions. For the derivation we employ the Lagrangian formalism to determine the correct solutions, which extremize the underlying action of the system. In the numerical evaluation we develop diverse state¿of¿the¿art algorithms which efficiently tackle equations with matrix sine and cosine functions. For this purpose, we introduce two special series related to trigonometric functions. They provide approximate solutions of the system through a suitable combination. For the final computation an algorithm based on Taylor expansion with forward and backward error analysis for computing those series had to be devised. We also implement several MATLAB programs which simulate and visualize the two¿dimensional lattice and check its energy conservation. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Economia y Competitividad, the European Regional Development Fund (ERDF) under grant TIN2017-89314-P, and the Programa de Apoyo a la Investigacion y Desarrollo 2018 (PAID-06-18) of the Universitat Politecnica de Valencia under grant SP20180016. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cosine and sine matrix functions es_ES
dc.subject Forward and backward errors es_ES
dc.subject Harmonic oscillators es_ES
dc.subject Lattice dynamics es_ES
dc.subject Lagrangian formalism es_ES
dc.subject Matrix differential equations es_ES
dc.subject Taylor approximation es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Simulation of Harmonic Oscillators on the Lattice es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.6510 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89314-P/ES/LIBRERIAS DE ALTAS PRESTACIONES PARA EL CALCULO DE FUNCIONES DE MATRICES Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180016/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Tung, MM.; Ibáñez González, JJ.; Defez Candel, E.; Sastre, J. (2020). Simulation of Harmonic Oscillators on the Lattice. Mathematical Methods in the Applied Sciences. 43(14):8237-8252. https://doi.org/10.1002/mma.6510 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.6510 es_ES
dc.description.upvformatpinicio 8237 es_ES
dc.description.upvformatpfin 8252 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\423439 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Dehghan, M., & Hajarian, M. (2009). Determination of a matrix function using the divided difference method of Newton and the interpolation technique of Hermite. Journal of Computational and Applied Mathematics, 231(1), 67-81. doi:10.1016/j.cam.2009.01.021 es_ES
dc.description.references Dehghan, M., & Hajarian, M. (2010). Computing matrix functions using mixed interpolation methods. Mathematical and Computer Modelling, 52(5-6), 826-836. doi:10.1016/j.mcm.2010.05.013 es_ES
dc.description.references Kazem, S., & Dehghan, M. (2017). Application of finite difference method of lines on the heat equation. Numerical Methods for Partial Differential Equations, 34(2), 626-660. doi:10.1002/num.22218 es_ES
dc.description.references Kazem, S., & Dehghan, M. (2018). Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (MOL). Engineering with Computers, 35(1), 229-241. doi:10.1007/s00366-018-0595-5 es_ES
dc.description.references Paterson, M. S., & Stockmeyer, L. J. (1973). On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials. SIAM Journal on Computing, 2(1), 60-66. doi:10.1137/0202007 es_ES
dc.description.references Sastre, J., Ibáñez, J., Defez, E., & Ruiz, P. (2011). Efficient orthogonal matrix polynomial based method for computing matrix exponential. Applied Mathematics and Computation, 217(14), 6451-6463. doi:10.1016/j.amc.2011.01.004 es_ES
dc.description.references Higham, N. J. (2008). Functions of Matrices. doi:10.1137/1.9780898717778 es_ES
dc.description.references Sastre, J., Ibáñez, J., Defez, E., & Ruiz, P. (2011). Accurate matrix exponential computation to solve coupled differential models in engineering. Mathematical and Computer Modelling, 54(7-8), 1835-1840. doi:10.1016/j.mcm.2010.12.049 es_ES
dc.description.references Serbin, S. M., & Blalock, S. A. (1980). An Algorithm for Computing the Matrix Cosine. SIAM Journal on Scientific and Statistical Computing, 1(2), 198-204. doi:10.1137/0901013 es_ES
dc.description.references Ruiz, P., Sastre, J., Ibáñez, J., & Defez, E. (2016). High performance computing of the matrix exponential. Journal of Computational and Applied Mathematics, 291, 370-379. doi:10.1016/j.cam.2015.04.001 es_ES
dc.description.references Higham, N. J. (1988). FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation. ACM Transactions on Mathematical Software, 14(4), 381-396. doi:10.1145/50063.214386 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem