- -

Impact of driving dynamics in RDE test on NOx emissions dispersion

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Impact of driving dynamics in RDE test on NOx emissions dispersion

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Luján, José M. es_ES
dc.contributor.author Guardiola, Carlos es_ES
dc.contributor.author Pla Moreno, Benjamín es_ES
dc.contributor.author Pandey, Varun es_ES
dc.date.accessioned 2021-07-31T03:30:53Z
dc.date.available 2021-07-31T03:30:53Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 0954-4070 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171120
dc.description.abstract [EN] EU6D emission regulation intends to bridge the gap between laboratory tests and the real driving conditions by introducing real drive emission testing. It requires the measurement of real drive emission to be an additional type approval test in order to take into account the influence of road profile, ambient conditions and traffic situations. An important amendment has been included in Commission regulation (European Union) 2016/646, limiting the driving dynamics and hence avoiding the biased testing of the vehicle. In this work, a drive cycle generator has been developed to synthesise cycles meeting all the regulatory requirements of the real drive emission testing. The generator is based on the transition probability matrix obtained from each phase of the World harmonised Light vehicle Test Procedure cycle. Driving dynamics have been varied based on real drive emission regulations, and several trips have been generated with dynamics ranging from soft to aggressive. A direct injection compression ignition 1.5 L engine with a state-of-the-art aftertreatment system has been utilised to run the generated synthetic cycles. The analysis of the results obtained in the tests (all of them complying with real drive emission restrictions in terms of driving dynamics) points out a noticeable 60% relative dispersion in the NO(x)emissions downstream of the catalyst. The contribution of the proposed method lies not only in the fact that it synthesises driving cycles as stochastic process and is capable of tuning the driving dynamics based on real drive emission regulations, but it also presents the range of dispersion possible in NO (x)emissions solely due to the driving dynamics. The methodology followed in the present work could be an essential step in future engine developments, where testing engine prototypes on the entire range of driving dynamics in the engine test bench facility could provide interesting insights about the expected NO(x)emissions in real drive emission testing. es_ES
dc.description.sponsorship The authors acknowledge the support of Spanish Ministrrio de Economia, Industria y Competitivad through project TRA2016-78717-R es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Real drive NO(x)emissions es_ES
dc.subject Drive cycle generator es_ES
dc.subject Driving dynamics es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Impact of driving dynamics in RDE test on NOx emissions dispersion es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0954407019881581 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2016-78717-R/ES/ESTRATEGIAS DE CONTROL BASADAS EN LA INFORMACION CONTEXTUAL DEL VEHICULO PARA LA REDUCCION DEL CONSUMO DE COMBUSTIBLE Y LAS EMISIONES EN CONDICIONES REALES DE CONDUCCION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Luján, JM.; Guardiola, C.; Pla Moreno, B.; Pandey, V. (2020). Impact of driving dynamics in RDE test on NOx emissions dispersion. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering. 234(6):1770-1778. https://doi.org/10.1177/0954407019881581 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/0954407019881581 es_ES
dc.description.upvformatpinicio 1770 es_ES
dc.description.upvformatpfin 1778 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 234 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\411298 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Hooftman, N., Messagie, M., Van Mierlo, J., & Coosemans, T. (2018). A review of the European passenger car regulations – Real driving emissions vs local air quality. Renewable and Sustainable Energy Reviews, 86, 1-21. doi:10.1016/j.rser.2018.01.012 es_ES
dc.description.references Chen, Y., & Borken-Kleefeld, J. (2014). Real-driving emissions from cars and light commercial vehicles – Results from 13 years remote sensing at Zurich/CH. Atmospheric Environment, 88, 157-164. doi:10.1016/j.atmosenv.2014.01.040 es_ES
dc.description.references Veerle H, Gerrit K, Norbert L, et al. NOx emissions of fifteen euro 6 diesel cars: results of the Dutch LD road vehicle emission testing programme 2016. Technical Report, TNO, Delft, 10 October 2016. es_ES
dc.description.references Samuel, S., Morrey, D., Fowkes, M., Taylor, D. H. C., Austin, L., Felstead, T., & Latham, S. (2005). Real-world fuel economy and emission levels of a typical EURO-IV passenger vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219(6), 833-842. doi:10.1243/095440705x28277 es_ES
dc.description.references Zacharof, N., Tietge, U., Franco, V., & Mock, P. (2016). Type approval and real-world CO2 and NOx emissions from EU light commercial vehicles. Energy Policy, 97, 540-548. doi:10.1016/j.enpol.2016.08.002 es_ES
dc.description.references Luján, J. M., Climent, H., Ruiz, S., & Moratal, A. (2018). Influence of ambient temperature on diesel engine raw pollutants and fuel consumption in different driving cycles. International Journal of Engine Research, 20(8-9), 877-888. doi:10.1177/1468087418792353 es_ES
dc.description.references Lin, J., & Niemeier, D. A. (2002). An exploratory analysis comparing a stochastic driving cycle to California’s regulatory cycle. Atmospheric Environment, 36(38), 5759-5770. doi:10.1016/s1352-2310(02)00695-7 es_ES
dc.description.references Lee, T. K., & Filipi, Z. S. (2011). Synthesis of real-world driving cycles using stochastic process and statistical methodology. International Journal of Vehicle Design, 57(1), 17. doi:10.1504/ijvd.2011.043590 es_ES
dc.description.references Gong, Q., Midlam-Mohler, S., Marano, V., & Rizzoni, G. (2011). An Iterative Markov Chain Approach for Generating Vehicle Driving Cycles. SAE International Journal of Engines, 4(1), 1035-1045. doi:10.4271/2011-01-0880 es_ES
dc.description.references Miller J, Franco V. Impact of improved regulation of real-world NOx emissions from diesel passenger cars in the EU 2015 2030. Technical Report, International Council on Clean Transportation, Washington DC, December 2016. es_ES
dc.description.references Rajan, B., McGordon, A., & Jennings, P. (2012). An Investigation on the Effect of Driver Style and Driving Events on Energy Demand of a PHEV. World Electric Vehicle Journal, 5(1), 173-181. doi:10.3390/wevj5010173 es_ES
dc.description.references Gallus, J., Kirchner, U., Vogt, R., & Benter, T. (2017). Impact of driving style and road grade on gaseous exhaust emissions of passenger vehicles measured by a Portable Emission Measurement System (PEMS). Transportation Research Part D: Transport and Environment, 52, 215-226. doi:10.1016/j.trd.2017.03.011 es_ES
dc.description.references Van Mierlo, J., Maggetto, G., Van de Burgwal, E., & Gense, R. (2004). Driving style and traffic measures-influence on vehicle emissions and fuel consumption. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(1), 43-50. doi:10.1243/095440704322829155 es_ES
dc.description.references Ericsson, E. (2001). Independent driving pattern factors and their influence on fuel-use and exhaust emission factors. Transportation Research Part D: Transport and Environment, 6(5), 325-345. doi:10.1016/s1361-9209(01)00003-7 es_ES
dc.description.references Guardiola, C., Pla, B., Bares, P., & Waschl, H. (2016). Adaptive calibration for reduced fuel consumption and emissions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 230(14), 2002-2014. doi:10.1177/0954407016636977 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem