- -

Photobehavior of the antipsychotic drug cyamemazine in a supramolecular gel protective environment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photobehavior of the antipsychotic drug cyamemazine in a supramolecular gel protective environment

Mostrar el registro completo del ítem

Vendrell-Criado, V.; Angulo-Pachón, CA.; Miravet, JF.; Galindo, F.; Miranda Alonso, MÁ.; Jiménez Molero, MC. (2020). Photobehavior of the antipsychotic drug cyamemazine in a supramolecular gel protective environment. Journal of Photochemistry and Photobiology B Biology. 202:1-4. https://doi.org/10.1016/j.jphotobiol.2019.111686

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171324

Ficheros en el ítem

Metadatos del ítem

Título: Photobehavior of the antipsychotic drug cyamemazine in a supramolecular gel protective environment
Autor: Vendrell-Criado, Victoria Angulo-Pachón, César A. Miravet, Juan F. Galindo, Francisco Miranda Alonso, Miguel Ángel Jiménez Molero, María Consuelo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] In this work, a molecular hydrogel made of gelator (S)-4-((3-methyl-1-(nonylamino)-1-oxobutan-2-yl)amino)-4-oxobutanoic acid (SVN) has been employed as soft container to modify the photochemical and photophysical ...[+]
Palabras clave: Fluorescence , Laser flash photolysis , Photooxidation , Transient absorption spectra , Triplet decay
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Photochemistry and Photobiology B Biology. (issn: 1011-1344 )
DOI: 10.1016/j.jphotobiol.2019.111686
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jphotobiol.2019.111686
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2015-71004-R/ES/NANOGELES MOLECULARES FOTOACTIVOS ORIENTADOS A LA SOLUCION DE RETOS BIOMEDICOS/
info:eu-repo/grantAgreement/MINECO//CTQ2016-78875-P/ES/CONTROL SUPRAMOLECULAR DE LA FOTORREACTIVIDAD EN MEDIOS MICROHETEROGENOS BASADOS EN AMINOACIDOS: GELES MOLECULARES Y PROTEINAS TRANSPORTADORAS COMO NANORREACTORES/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/
Agradecimientos:
Financial support from the Spanish Government (CTQ2016-78875-P and CTQ2015-71004-R), the Generalitat Valenciana (PROMETEO/2017/075) and the European Union is gratefully acknowledged.
Tipo: Artículo

References

Bourin, M., Dailly, E., & Hascöet, M. (2006). Preclinical and Clinical Pharmacology of Cyamemazine: Anxiolytic Effects and Prevention of Alcohol and Benzodiazepine Withdrawal Syndrome. CNS Drug Reviews, 10(3), 219-229. doi:10.1111/j.1527-3458.2004.tb00023.x

Conilleau, V., Dompmartin, A., Michel, M., Verneuil, L., & Leroy, D. (2000). Photoscratch testing in systemic drug-induced photosensitivity. Photodermatology, Photoimmunology and Photomedicine, 16(2), 62-66. doi:10.1034/j.1600-0781.2000.d01-5.x

Morlière, P., Bosca, F., Miranda, M. A., Castell, J. V., & Santus, R. (2004). Primary Photochemical Processes of the Phototoxic Neuroleptic Cyamemazine: A Study by Laser Flash Photolysis and Steady-state Irradiation¶. Photochemistry and Photobiology, 80(3), 535. doi:10.1562/0031-8655(2004)080<0535:pppotp>2.0.co;2 [+]
Bourin, M., Dailly, E., & Hascöet, M. (2006). Preclinical and Clinical Pharmacology of Cyamemazine: Anxiolytic Effects and Prevention of Alcohol and Benzodiazepine Withdrawal Syndrome. CNS Drug Reviews, 10(3), 219-229. doi:10.1111/j.1527-3458.2004.tb00023.x

Conilleau, V., Dompmartin, A., Michel, M., Verneuil, L., & Leroy, D. (2000). Photoscratch testing in systemic drug-induced photosensitivity. Photodermatology, Photoimmunology and Photomedicine, 16(2), 62-66. doi:10.1034/j.1600-0781.2000.d01-5.x

Morlière, P., Bosca, F., Miranda, M. A., Castell, J. V., & Santus, R. (2004). Primary Photochemical Processes of the Phototoxic Neuroleptic Cyamemazine: A Study by Laser Flash Photolysis and Steady-state Irradiation¶. Photochemistry and Photobiology, 80(3), 535. doi:10.1562/0031-8655(2004)080<0535:pppotp>2.0.co;2

Morlière, P., Haigle, J., Aissani, K., Filipe, P., Silva, J. N., & Santus, R. (2004). An Insight into the Mechanisms of the Phototoxic Response Induced by Cyamemazine in Cultured Fibroblasts and Keratinocytes¶. Photochemistry and Photobiology, 79(2), 163. doi:10.1562/0031-8655(2004)079<0163:aiitmo>2.0.co;2

Weiss, R. G. (2014). The Past, Present, and Future of Molecular Gels. What Is the Status of the Field, and Where Is It Going? Journal of the American Chemical Society, 136(21), 7519-7530. doi:10.1021/ja503363v

Draper, E. R., & Adams, D. J. (2017). Low-Molecular-Weight Gels: The State of the Art. Chem, 3(3), 390-410. doi:10.1016/j.chempr.2017.07.012

Lan, Y., Corradini, M. G., Weiss, R. G., Raghavan, S. R., & Rogers, M. A. (2015). To gel or not to gel: correlating molecular gelation with solvent parameters. Chemical Society Reviews, 44(17), 6035-6058. doi:10.1039/c5cs00136f

Segarra-Maset, M. D., Nebot, V. J., Miravet, J. F., & Escuder, B. (2013). Control of molecular gelation by chemical stimuli. Chem. Soc. Rev., 42(17), 7086-7098. doi:10.1039/c2cs35436e

Jones, C. D., & Steed, J. W. (2016). Gels with sense: supramolecular materials that respond to heat, light and sound. Chemical Society Reviews, 45(23), 6546-6596. doi:10.1039/c6cs00435k

Hirst, A. R., Escuder, B., Miravet, J. F., & Smith, D. K. (2008). High-Tech Applications of Self-Assembling Supramolecular Nanostructured Gel-Phase Materials: From Regenerative Medicine to Electronic Devices. Angewandte Chemie International Edition, 47(42), 8002-8018. doi:10.1002/anie.200800022

Mayr, J., Saldías, C., & Díaz Díaz, D. (2018). Release of small bioactive molecules from physical gels. Chemical Society Reviews, 47(4), 1484-1515. doi:10.1039/c7cs00515f

Maiti, B., Abramov, A., Pérez-Ruiz, R., & Díaz Díaz, D. (2019). The Prospect of Photochemical Reactions in Confined Gel Media. Accounts of Chemical Research, 52(7), 1865-1876. doi:10.1021/acs.accounts.9b00097

Escuder, B., Rodríguez-Llansola, F., & Miravet, J. F. (2010). Supramolecular gels as active media for organic reactions and catalysis. New Journal of Chemistry, 34(6), 1044. doi:10.1039/b9nj00764d

Miravet, J. F., & Escuder, B. (2005). Reactive Organogels:  Self-Assembled Support for Functional Materials. Organic Letters, 7(22), 4791-4794. doi:10.1021/ol0514045

Guler, M. O., & Stupp, S. I. (2007). A Self-Assembled Nanofiber Catalyst for Ester Hydrolysis. Journal of the American Chemical Society, 129(40), 12082-12083. doi:10.1021/ja075044n

Rodríguez-Llansola, F., Escuder, B., & Miravet, J. F. (2009). Switchable Perfomance of an l-Proline-Derived Basic Catalyst Controlled by Supramolecular Gelation. Journal of the American Chemical Society, 131(32), 11478-11484. doi:10.1021/ja902589f

Galindo, F., Isabel Burguete, M., Gavara, R., & Luis, S. V. (2006). Fluorescence quenching in organogel as a reaction medium. Journal of Photochemistry and Photobiology A: Chemistry, 178(1), 57-61. doi:10.1016/j.jphotochem.2005.06.021

Burguete, M. I., Izquierdo, M. A., Galindo, F., & Luis, S. V. (2008). Time resolved fluorescence of naproxen in organogel medium. Chemical Physics Letters, 460(4-6), 503-506. doi:10.1016/j.cplett.2008.06.045

Díaz Díaz, D., Kühbeck, D., & Koopmans, R. J. (2011). Stimuli-responsive gels as reaction vessels and reusable catalysts. Chem. Soc. Rev., 40(1), 427-448. doi:10.1039/c005401c

Pérez-Ruiz, R., & Díaz Díaz, D. (2015). Photophysical and photochemical processes in 3D self-assembled gels as confined microenvironments. Soft Matter, 11(26), 5180-5187. doi:10.1039/c5sm00877h

Arnau del Valle, C., Felip-León, C., Angulo-Pachón, C. A., Mikhailov, M., Sokolov, M. N., Miravet, J. F., & Galindo, F. (2019). Photoactive Hexanuclear Molybdenum Nanoclusters Embedded in Molecular Organogels. Inorganic Chemistry, 58(14), 8900-8905. doi:10.1021/acs.inorgchem.9b00916

Dawn, A., Fujita, N., Haraguchi, S., Sada, K., & Shinkai, S. (2009). An organogel system can control the stereochemical course of anthracene photodimerization. Chemical Communications, (16), 2100. doi:10.1039/b820565e

Shumburo, A., & Biewer, M. C. (2002). Stabilization of an Organic Photochromic Material by Incorporation in an Organogel. Chemistry of Materials, 14(9), 3745-3750. doi:10.1021/cm020421a

Bhat, S., & Maitra, U. (2007). Hydrogels as Reaction Vessels: Acenaphthylene Dimerization in Hydrogels Derived from Bile Acid Analogues. Molecules, 12(9), 2181-2189. doi:10.3390/12092181

Bachl, J., Hohenleutner, A., Dhar, B. B., Cativiela, C., Maitra, U., König, B., & Díaz, D. D. (2013). Organophotocatalysis in nanostructured soft gel materials as tunable reaction vessels: comparison with homogeneous and micellar solutions. Journal of Materials Chemistry A, 1(14), 4577. doi:10.1039/c3ta01109g

Torres-Martínez, A., Angulo-Pachón, C. A., Galindo, F., & Miravet, J. F. (2019). In between molecules and self-assembled fibrillar networks: highly stable nanogel particles from a low molecular weight hydrogelator. Soft Matter, 15(17), 3565-3572. doi:10.1039/c9sm00252a

Vendrell-Criado, V., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2018). A combined photophysical and computational study on the binding of mycophenolate mofetil and its major metabolite to transport proteins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 199, 308-314. doi:10.1016/j.saa.2018.03.064

Vayá, I., Andreu, I., Jiménez, M. C., & Miranda, M. A. (2014). Photooxygenation mechanisms in naproxen–amino acid linked systems. Photochem. Photobiol. Sci., 13(2), 224-230. doi:10.1039/c3pp50252j

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem