- -

Photobehavior of the antipsychotic drug cyamemazine in a supramolecular gel protective environment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photobehavior of the antipsychotic drug cyamemazine in a supramolecular gel protective environment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vendrell-Criado, Victoria es_ES
dc.contributor.author Angulo-Pachón, César A. es_ES
dc.contributor.author Miravet, Juan F. es_ES
dc.contributor.author Galindo, Francisco es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.date.accessioned 2021-09-03T03:34:09Z
dc.date.available 2021-09-03T03:34:09Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 1011-1344 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171324
dc.description.abstract [EN] In this work, a molecular hydrogel made of gelator (S)-4-((3-methyl-1-(nonylamino)-1-oxobutan-2-yl)amino)-4-oxobutanoic acid (SVN) has been employed as soft container to modify the photochemical and photophysical behavior of the antipsychotic drug cyamemazine (CMZ). The interaction of CMZ with the gel network has been evidenced by fluorescence spectroscopy through a hypsochromic shift of the emission band (from lambda(max) = 521 nm in solution to lambda(max) = 511 nm in the gel) and an increase of the fluorescence lifetime (5.6 ns in PBS vs. 7.2 ns in the gel). In the laser flash photolysis experiments on CMZ/SVN systems, the CMZ triplet excited state ((3)CMZ*), monitored at lambda = 320 nm, has been more efficiently generated and became much longer-lived than in solution (2.7 mu s vs. 0.7 mu s); besides, photochemical ionization leading to the radical cation CMZ(+center dot) was disfavored. In the steady-state experiments, photooxidation of CMZ to afford the N,S-dioxide derivative CMZ-SONO has been retarded in the gel, which provides a more lipophilic and constrained microenvironment. Both the photophysical properties and the photoreactivity are in agreement with CMZ located in a less polar domain when entrapped in the supramolecular gel, as result of the interaction of the drug with the fibers of the supramolecular SVN gel. es_ES
dc.description.sponsorship Financial support from the Spanish Government (CTQ2016-78875-P and CTQ2015-71004-R), the Generalitat Valenciana (PROMETEO/2017/075) and the European Union is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Photochemistry and Photobiology B Biology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fluorescence es_ES
dc.subject Laser flash photolysis es_ES
dc.subject Photooxidation es_ES
dc.subject Transient absorption spectra es_ES
dc.subject Triplet decay es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Photobehavior of the antipsychotic drug cyamemazine in a supramolecular gel protective environment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jphotobiol.2019.111686 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-71004-R/ES/NANOGELES MOLECULARES FOTOACTIVOS ORIENTADOS A LA SOLUCION DE RETOS BIOMEDICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-78875-P/ES/CONTROL SUPRAMOLECULAR DE LA FOTORREACTIVIDAD EN MEDIOS MICROHETEROGENOS BASADOS EN AMINOACIDOS: GELES MOLECULARES Y PROTEINAS TRANSPORTADORAS COMO NANORREACTORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Vendrell-Criado, V.; Angulo-Pachón, CA.; Miravet, JF.; Galindo, F.; Miranda Alonso, MÁ.; Jiménez Molero, MC. (2020). Photobehavior of the antipsychotic drug cyamemazine in a supramolecular gel protective environment. Journal of Photochemistry and Photobiology B Biology. 202:1-4. https://doi.org/10.1016/j.jphotobiol.2019.111686 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jphotobiol.2019.111686 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 202 es_ES
dc.identifier.pmid 31731078 es_ES
dc.relation.pasarela S\413161 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bourin, M., Dailly, E., & Hascöet, M. (2006). Preclinical and Clinical Pharmacology of Cyamemazine: Anxiolytic Effects and Prevention of Alcohol and Benzodiazepine Withdrawal Syndrome. CNS Drug Reviews, 10(3), 219-229. doi:10.1111/j.1527-3458.2004.tb00023.x es_ES
dc.description.references Conilleau, V., Dompmartin, A., Michel, M., Verneuil, L., & Leroy, D. (2000). Photoscratch testing in systemic drug-induced photosensitivity. Photodermatology, Photoimmunology and Photomedicine, 16(2), 62-66. doi:10.1034/j.1600-0781.2000.d01-5.x es_ES
dc.description.references Morlière, P., Bosca, F., Miranda, M. A., Castell, J. V., & Santus, R. (2004). Primary Photochemical Processes of the Phototoxic Neuroleptic Cyamemazine: A Study by Laser Flash Photolysis and Steady-state Irradiation¶. Photochemistry and Photobiology, 80(3), 535. doi:10.1562/0031-8655(2004)080<0535:pppotp>2.0.co;2 es_ES
dc.description.references Morlière, P., Haigle, J., Aissani, K., Filipe, P., Silva, J. N., & Santus, R. (2004). An Insight into the Mechanisms of the Phototoxic Response Induced by Cyamemazine in Cultured Fibroblasts and Keratinocytes¶. Photochemistry and Photobiology, 79(2), 163. doi:10.1562/0031-8655(2004)079<0163:aiitmo>2.0.co;2 es_ES
dc.description.references Weiss, R. G. (2014). The Past, Present, and Future of Molecular Gels. What Is the Status of the Field, and Where Is It Going? Journal of the American Chemical Society, 136(21), 7519-7530. doi:10.1021/ja503363v es_ES
dc.description.references Draper, E. R., & Adams, D. J. (2017). Low-Molecular-Weight Gels: The State of the Art. Chem, 3(3), 390-410. doi:10.1016/j.chempr.2017.07.012 es_ES
dc.description.references Lan, Y., Corradini, M. G., Weiss, R. G., Raghavan, S. R., & Rogers, M. A. (2015). To gel or not to gel: correlating molecular gelation with solvent parameters. Chemical Society Reviews, 44(17), 6035-6058. doi:10.1039/c5cs00136f es_ES
dc.description.references Segarra-Maset, M. D., Nebot, V. J., Miravet, J. F., & Escuder, B. (2013). Control of molecular gelation by chemical stimuli. Chem. Soc. Rev., 42(17), 7086-7098. doi:10.1039/c2cs35436e es_ES
dc.description.references Jones, C. D., & Steed, J. W. (2016). Gels with sense: supramolecular materials that respond to heat, light and sound. Chemical Society Reviews, 45(23), 6546-6596. doi:10.1039/c6cs00435k es_ES
dc.description.references Hirst, A. R., Escuder, B., Miravet, J. F., & Smith, D. K. (2008). High-Tech Applications of Self-Assembling Supramolecular Nanostructured Gel-Phase Materials: From Regenerative Medicine to Electronic Devices. Angewandte Chemie International Edition, 47(42), 8002-8018. doi:10.1002/anie.200800022 es_ES
dc.description.references Mayr, J., Saldías, C., & Díaz Díaz, D. (2018). Release of small bioactive molecules from physical gels. Chemical Society Reviews, 47(4), 1484-1515. doi:10.1039/c7cs00515f es_ES
dc.description.references Maiti, B., Abramov, A., Pérez-Ruiz, R., & Díaz Díaz, D. (2019). The Prospect of Photochemical Reactions in Confined Gel Media. Accounts of Chemical Research, 52(7), 1865-1876. doi:10.1021/acs.accounts.9b00097 es_ES
dc.description.references Escuder, B., Rodríguez-Llansola, F., & Miravet, J. F. (2010). Supramolecular gels as active media for organic reactions and catalysis. New Journal of Chemistry, 34(6), 1044. doi:10.1039/b9nj00764d es_ES
dc.description.references Miravet, J. F., & Escuder, B. (2005). Reactive Organogels:  Self-Assembled Support for Functional Materials. Organic Letters, 7(22), 4791-4794. doi:10.1021/ol0514045 es_ES
dc.description.references Guler, M. O., & Stupp, S. I. (2007). A Self-Assembled Nanofiber Catalyst for Ester Hydrolysis. Journal of the American Chemical Society, 129(40), 12082-12083. doi:10.1021/ja075044n es_ES
dc.description.references Rodríguez-Llansola, F., Escuder, B., & Miravet, J. F. (2009). Switchable Perfomance of an l-Proline-Derived Basic Catalyst Controlled by Supramolecular Gelation. Journal of the American Chemical Society, 131(32), 11478-11484. doi:10.1021/ja902589f es_ES
dc.description.references Galindo, F., Isabel Burguete, M., Gavara, R., & Luis, S. V. (2006). Fluorescence quenching in organogel as a reaction medium. Journal of Photochemistry and Photobiology A: Chemistry, 178(1), 57-61. doi:10.1016/j.jphotochem.2005.06.021 es_ES
dc.description.references Burguete, M. I., Izquierdo, M. A., Galindo, F., & Luis, S. V. (2008). Time resolved fluorescence of naproxen in organogel medium. Chemical Physics Letters, 460(4-6), 503-506. doi:10.1016/j.cplett.2008.06.045 es_ES
dc.description.references Díaz Díaz, D., Kühbeck, D., & Koopmans, R. J. (2011). Stimuli-responsive gels as reaction vessels and reusable catalysts. Chem. Soc. Rev., 40(1), 427-448. doi:10.1039/c005401c es_ES
dc.description.references Pérez-Ruiz, R., & Díaz Díaz, D. (2015). Photophysical and photochemical processes in 3D self-assembled gels as confined microenvironments. Soft Matter, 11(26), 5180-5187. doi:10.1039/c5sm00877h es_ES
dc.description.references Arnau del Valle, C., Felip-León, C., Angulo-Pachón, C. A., Mikhailov, M., Sokolov, M. N., Miravet, J. F., & Galindo, F. (2019). Photoactive Hexanuclear Molybdenum Nanoclusters Embedded in Molecular Organogels. Inorganic Chemistry, 58(14), 8900-8905. doi:10.1021/acs.inorgchem.9b00916 es_ES
dc.description.references Dawn, A., Fujita, N., Haraguchi, S., Sada, K., & Shinkai, S. (2009). An organogel system can control the stereochemical course of anthracene photodimerization. Chemical Communications, (16), 2100. doi:10.1039/b820565e es_ES
dc.description.references Shumburo, A., & Biewer, M. C. (2002). Stabilization of an Organic Photochromic Material by Incorporation in an Organogel. Chemistry of Materials, 14(9), 3745-3750. doi:10.1021/cm020421a es_ES
dc.description.references Bhat, S., & Maitra, U. (2007). Hydrogels as Reaction Vessels: Acenaphthylene Dimerization in Hydrogels Derived from Bile Acid Analogues. Molecules, 12(9), 2181-2189. doi:10.3390/12092181 es_ES
dc.description.references Bachl, J., Hohenleutner, A., Dhar, B. B., Cativiela, C., Maitra, U., König, B., & Díaz, D. D. (2013). Organophotocatalysis in nanostructured soft gel materials as tunable reaction vessels: comparison with homogeneous and micellar solutions. Journal of Materials Chemistry A, 1(14), 4577. doi:10.1039/c3ta01109g es_ES
dc.description.references Torres-Martínez, A., Angulo-Pachón, C. A., Galindo, F., & Miravet, J. F. (2019). In between molecules and self-assembled fibrillar networks: highly stable nanogel particles from a low molecular weight hydrogelator. Soft Matter, 15(17), 3565-3572. doi:10.1039/c9sm00252a es_ES
dc.description.references Vendrell-Criado, V., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2018). A combined photophysical and computational study on the binding of mycophenolate mofetil and its major metabolite to transport proteins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 199, 308-314. doi:10.1016/j.saa.2018.03.064 es_ES
dc.description.references Vayá, I., Andreu, I., Jiménez, M. C., & Miranda, M. A. (2014). Photooxygenation mechanisms in naproxen–amino acid linked systems. Photochem. Photobiol. Sci., 13(2), 224-230. doi:10.1039/c3pp50252j es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem