- -

Photonic multiple millimeter wave signal generation and distribution overreconfigurable hybrid SSMF/FSO links

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photonic multiple millimeter wave signal generation and distribution overreconfigurable hybrid SSMF/FSO links

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vallejo-Castro, Luis es_ES
dc.contributor.author Ortega Tamarit, Beatriz es_ES
dc.contributor.author Bohata, Jan es_ES
dc.contributor.author Zvanovec, Stanislav es_ES
dc.contributor.author Almenar Terre, Vicenç es_ES
dc.date.accessioned 2021-09-09T03:35:29Z
dc.date.available 2021-09-09T03:35:29Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 1068-5200 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171686
dc.description.abstract [EN] Microwave photonics provides attractive solutions for millimeter wave (mmW) signal generation. In this paper, we demonstrate photonically generated multiple mmW signals transmission over a wavelength division multiplexed (WDM) hybrid optical network based on optical fiber and free-space optics (FSO) links. The experimental results demonstrate the generation and reconfigurable signal distribution from a central office to base stations in the frequency range 14 40 GHz with phase noise levels below 87 dBc/Hz. Moreover, 10 Gb/s data transmission has been demonstrated over photonically generated 40 GHz mmW signal. We show that FSO technology provides a possible solution for mmW fronthaul in 5th generation networks to extend the optical access network providing increased wireless accessibility and maintaining transmission capacity. es_ES
dc.description.sponsorship This work has been funded by the Research Excellence Award Programme GVA PROMETEO 2017/103 Future Microwave Photonics Technologies and Applications and MEYS INTER-COST project LTC18008 (within COST action CA 16220). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Optical Fiber Technology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Microwave photonics es_ES
dc.subject Millimeter-waves es_ES
dc.subject External modulation es_ES
dc.subject Free-space optics es_ES
dc.subject Wavelength division multiplexing es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Photonic multiple millimeter wave signal generation and distribution overreconfigurable hybrid SSMF/FSO links es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.yofte.2019.102085 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F103/ES/TECNOLOGIAS Y APLICACIONES FUTURAS DE LA FOTONICA DE MICROONDAS (FUTURE MWP TECHNOLOGIES & APPLICATIONS)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Vallejo-Castro, L.; Ortega Tamarit, B.; Bohata, J.; Zvanovec, S.; Almenar Terre, V. (2020). Photonic multiple millimeter wave signal generation and distribution overreconfigurable hybrid SSMF/FSO links. Optical Fiber Technology. 54:1-7. https://doi.org/10.1016/j.yofte.2019.102085 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.yofte.2019.102085 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 54 es_ES
dc.relation.pasarela S\401731 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Ministry of Education, Youth and Sports, República Checa es_ES
dc.description.references Waterhouse, R., & Novack, D. (2015). Realizing 5G: Microwave Photonics for 5G Mobile Wireless Systems. IEEE Microwave Magazine, 16(8), 84-92. doi:10.1109/mmm.2015.2441593 es_ES
dc.description.references Hirata, A., Takahashi, H., Yamaguchi, R., Kosugi, T., Murata, K., Nagatsuma, T., … Kado, Y. (2008). Transmission Characteristics of 120-GHz-Band Wireless Link Using Radio-on-Fiber Technologies. Journal of Lightwave Technology, 26(15), 2338-2344. doi:10.1109/jlt.2008.925641 es_ES
dc.description.references Checko, A., Christiansen, H. L., Yan, Y., Scolari, L., Kardaras, G., Berger, M. S., & Dittmann, L. (2015). Cloud RAN for Mobile Networks—A Technology Overview. IEEE Communications Surveys & Tutorials, 17(1), 405-426. doi:10.1109/comst.2014.2355255 es_ES
dc.description.references Dat, P. T., Kanno, A., & Kawanishi, T. (2015). Radio-on-radio-over-fiber: efficient fronthauling for small cells and moving cells. IEEE Wireless Communications, 22(5), 67-75. doi:10.1109/mwc.2015.7306539 es_ES
dc.description.references Lim, C., Nirmalathas, A., Bakaul, M., Gamage, P., Ka-Lun Lee, Yizhuo Yang, … Waterhouse, R. (2010). Fiber-Wireless Networks and Subsystem Technologies. Journal of Lightwave Technology, 28(4), 390-405. doi:10.1109/jlt.2009.2031423 es_ES
dc.description.references Beas, J., Castanon, G., Aldaya, I., Aragon-Zavala, A., & Campuzano, G. (2013). Millimeter-Wave Frequency Radio over Fiber Systems: A Survey. IEEE Communications Surveys & Tutorials, 15(4), 1593-1619. doi:10.1109/surv.2013.013013.00135 es_ES
dc.description.references Yao, J. (2009). Microwave Photonics. Journal of Lightwave Technology, 27(3), 314-335. doi:10.1109/jlt.2008.2009551 es_ES
dc.description.references Doi, Y., Fukushima, S., Ohno, T., & Yoshino, K. (2001). Frequency stabilization of millimeter-wave subcarrier using laser heterodyne source and optical delay line. IEEE Photonics Technology Letters, 13(9), 1002-1004. doi:10.1109/68.942674 es_ES
dc.description.references Hurtado, A., Henning, I. D., Adams, M. J., & Lester, L. F. (2013). Generation of Tunable Millimeter-Wave and THz Signals With an Optically Injected Quantum Dot Distributed Feedback Laser. IEEE Photonics Journal, 5(4), 5900107-5900107. doi:10.1109/jphot.2013.2267535 es_ES
dc.description.references Liu, J., Chien, H.-C., Fan, S.-H., Chen, B., Yu, J., He, S., & Chang, G.-K. (2011). Efficient Optical Millimeter-Wave Generation Using a Frequency-Tripling Fabry–Pérot Laser With Sideband Injection and Synchronization. IEEE Photonics Technology Letters, 23(18), 1325-1327. doi:10.1109/lpt.2011.2159834 es_ES
dc.description.references Nakasyotani, T., Toda, H., Kuri, T., & Kitayama, K. (2006). Wavelength-division-multiplexed Millimeter-waveband radio-on-fiber system using a supercontinuum light source. Journal of Lightwave Technology, 24(1), 404-410. doi:10.1109/jlt.2005.859854 es_ES
dc.description.references L. Xu, C. Li, S.M.G. Lo, H.K. Tsang, Millimeter wave generation using four wave mixing in silicon waveguide, OECC 2010 Technical Digest, pp. 860-861, Jul. 2010. es_ES
dc.description.references Seo, Y.-K., Choi, C.-S., & Choi, W.-Y. (2002). All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 14(10), 1448-1450. doi:10.1109/lpt.2002.801823 es_ES
dc.description.references T. Kanesa, F. Maskuriy, M. Hafiz, R. Mohamad, S.M. Mitani, H.M. Hizan, A.I.A. Rahim, P.A. Haigh, S. Rajbhandari, G. Chang, Dual pump brillouin laser for RoF millimeterwave carrier generation with tunable resolution, TENCON 2015 – 2015 IEEE Region 10 Conference, pp. 1–6, Nov. 2015. es_ES
dc.description.references Zhang, L., Zhu, M., Ye, C., Fan, S.-H., Liu, C., Hu, X., … Chang, G.-K. (2013). Generation and transmission of multiband and multi-gigabit 60-GHz MMW signals in an RoF system with frequency quintupling technique. Optics Express, 21(8), 9899. doi:10.1364/oe.21.009899 es_ES
dc.description.references Zhang, J., Wang, J., Xu, Y., Xu, M., Lu, F., Cheng, L., … Chang, G. (2016). Fiber–wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique. Optics Letters, 41(9), 1909. doi:10.1364/ol.41.001909 es_ES
dc.description.references Zhang, R., Lu, F., Xu, M., Liu, S., Peng, P.-C., Shen, S., … Chang, G.-K. (2018). An Ultra-Reliable MMW/FSO A-RoF System Based on Coordinated Mapping and Combining Technique for 5G and Beyond Mobile Fronthaul. Journal of Lightwave Technology, 36(20), 4952-4959. doi:10.1109/jlt.2018.2866767 es_ES
dc.description.references Bohata, J., Komanec, M., Spáčil, J., Ghassemlooy, Z., Zvánovec, S., & Slavík, R. (2018). 24–26  GHz radio-over-fiber and free-space optics for fifth-generation systems. Optics Letters, 43(5), 1035. doi:10.1364/ol.43.001035 es_ES
dc.description.references Chun-Ting Lin, Chen, J. J., Sheng-Peng Dai, Peng-Chun Peng, & Sien Chi. (2008). Impact of Nonlinear Transfer Function and Imperfect Splitting Ratio of MZM on Optical Up-Conversion Employing Double Sideband With Carrier Suppression Modulation. Journal of Lightwave Technology, 26(15), 2449-2459. doi:10.1109/jlt.2008.927160 es_ES
dc.description.references Ning, G., Shum, P., & Zhou, J. (2007). Dispersion effect and compensation in optical-carrier-suppressed modulation transport systems. Journal of the Optical Society of America A, 24(11), 3432. doi:10.1364/josaa.24.003432 es_ES
dc.description.references Qi, G., Yao, J., Seregelyi, J., Paquet, S., Belisle, C., Zhang, X., … Kashyap, R. (2006). Phase-Noise Analysis of Optically Generated Millimeter-Wave Signals With External Optical Modulation Techniques. Journal of Lightwave Technology, 24(12), 4861-4875. doi:10.1109/jlt.2006.884990 es_ES
dc.description.references Lin Xu, Chao Li, Chow, C. W., & Hon Ki Tsang. (2009). Optical mm-Wave Signal Generation by Frequency Quadrupling Using an Optical Modulator and a Silicon Microresonator Filter. IEEE Photonics Technology Letters, 21(4), 209-211. doi:10.1109/lpt.2008.2010056 es_ES
dc.description.references International Telecommunication Union, Forward error correction for high bit-rate DWDM submarine systems, ITU-T Recommendation G.975.1, 2004. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem