- -

Treatment of Cyanide-Free Wastewater from Brass Electrodeposition with EDTA by Electrodialysis: Evaluation of Underlimiting and Overlimiting Operations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Treatment of Cyanide-Free Wastewater from Brass Electrodeposition with EDTA by Electrodialysis: Evaluation of Underlimiting and Overlimiting Operations

Mostrar el registro completo del ítem

Santana Barros, K.; Scarazzato, T.; Pérez-Herranz, V.; Espinosa, DCR. (2020). Treatment of Cyanide-Free Wastewater from Brass Electrodeposition with EDTA by Electrodialysis: Evaluation of Underlimiting and Overlimiting Operations. Membranes. 10(4):1-21. https://doi.org/10.3390/membranes10040069

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172301

Ficheros en el ítem

Metadatos del ítem

Título: Treatment of Cyanide-Free Wastewater from Brass Electrodeposition with EDTA by Electrodialysis: Evaluation of Underlimiting and Overlimiting Operations
Autor: Santana Barros, Kayo Scarazzato, Tatiana Pérez-Herranz, Valentín Espinosa, Denise Crocce Romano
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] Growing environmental concerns have led to the development of cleaner processes, such as the substitution of cyanide in electroplating industries and changes in the treatment of wastewaters. Hence, we evaluated the ...[+]
Palabras clave: Electrodialysis , Chronopotentiometry , Ion-exchange membrane , Overlimiting current , Water dissociation
Derechos de uso: Reconocimiento (by)
Fuente:
Membranes. (eissn: 2077-0375 )
DOI: 10.3390/membranes10040069
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/membranes10040069
Código del Proyecto:
info:eu-repo/grantAgreement/CNPq//171241%2F2017-7/
...[+]
info:eu-repo/grantAgreement/CNPq//171241%2F2017-7/
info:eu-repo/grantAgreement/FAPESP//2012%2F51871-9/
info:eu-repo/grantAgreement/CAPES//88887.362657%2F2019-00/
info:eu-repo/grantAgreement/CAPES//001/
info:eu-repo/grantAgreement/CNPq//141346%2F2016-7/
info:eu-repo/grantAgreement/CAPES//88881.190502%2F2018-01/
[-]
Agradecimientos:
This research was funded by CNPq (Process 141346/2016-7 and 171241/2017-7), FAPESP (Process 2012/51871-9) and CAPES (Processes 88881.190502/2018-01 and 88887.362657/2019-00). This study was financed in part by the Coordenacao ...[+]
Tipo: Artículo

References

Rashwan, S. M. (2007). Electrodeposition of Zn–Cu coatings from alkaline sulphate bath containing glycine. Transactions of the IMF, 85(4), 217-224. doi:10.1179/174591907x216440

Ramírez, C., & Calderón, J. A. (2016). Study of the effect of Triethanolamine as a chelating agent in the simultaneous electrodeposition of copper and zinc from non-cyanide electrolytes. Journal of Electroanalytical Chemistry, 765, 132-139. doi:10.1016/j.jelechem.2015.06.003

Ballesteros, J. C., Torres-Martínez, L. M., Juárez-Ramírez, I., Trejo, G., & Meas, Y. (2014). Study of the electrochemical co-reduction of Cu2+ and Zn2+ ions from an alkaline non-cyanide solution containing glycine. Journal of Electroanalytical Chemistry, 727, 104-112. doi:10.1016/j.jelechem.2014.04.020 [+]
Rashwan, S. M. (2007). Electrodeposition of Zn–Cu coatings from alkaline sulphate bath containing glycine. Transactions of the IMF, 85(4), 217-224. doi:10.1179/174591907x216440

Ramírez, C., & Calderón, J. A. (2016). Study of the effect of Triethanolamine as a chelating agent in the simultaneous electrodeposition of copper and zinc from non-cyanide electrolytes. Journal of Electroanalytical Chemistry, 765, 132-139. doi:10.1016/j.jelechem.2015.06.003

Ballesteros, J. C., Torres-Martínez, L. M., Juárez-Ramírez, I., Trejo, G., & Meas, Y. (2014). Study of the electrochemical co-reduction of Cu2+ and Zn2+ ions from an alkaline non-cyanide solution containing glycine. Journal of Electroanalytical Chemistry, 727, 104-112. doi:10.1016/j.jelechem.2014.04.020

Vagramyan, T., Leach, J. S. L., & Moon, J. R. (1979). On the problems of electrodepositing brass from non-cyanide electrolytes. Electrochimica Acta, 24(2), 231-236. doi:10.1016/0013-4686(79)80030-4

Carlos, I. ., & de Almeida, M. R. H. (2004). Study of the influence of the polyalcohol sorbitol on the electrodeposition of copper–zinc films from a non-cyanide bath. Journal of Electroanalytical Chemistry, 562(2), 153-159. doi:10.1016/j.jelechem.2003.08.028

De Almeida, M. R. H., Barbano, E. P., de Carvalho, M. F., Tulio, P. C., & Carlos, I. A. (2015). Copper–zinc electrodeposition in alkaline-sorbitol medium: Electrochemical studies and structural, morphological and chemical composition characterization. Applied Surface Science, 333, 13-22. doi:10.1016/j.apsusc.2015.02.005

De Almeida, M. R. H., Barbano, E. P., Zacarin, M. G., de Brito, M. M., Tulio, P. C., & Carlos, I. A. (2016). Electrodeposition of CuZn films from free-of-cyanide alkaline baths containing EDTA as complexing agent. Surface and Coatings Technology, 287, 103-112. doi:10.1016/j.surfcoat.2015.12.079

De Almeida, M. R. H., Barbano, E. P., de Carvalho, M. F., Carlos, I. A., Siqueira, J. L. P., & Barbosa, L. L. (2011). Electrodeposition of copper–zinc from an alkaline bath based on EDTA. Surface and Coatings Technology, 206(1), 95-102. doi:10.1016/j.surfcoat.2011.06.050

Senna, L. F., Díaz, S. L., & Sathler, L. (2003). Electrodeposition of copper–zinc alloys in pyrophosphate-based electrolytes. Journal of Applied Electrochemistry, 33(12), 1155-1161. doi:10.1023/b:jach.0000003756.11862.6e

Despić, A. R., Marinović, V., & Jović, V. D. (1992). Kinetics of deposition and dissolution of brass from the pyrophosphate—oxalate bath. Journal of Electroanalytical Chemistry, 339(1-2), 473-488. doi:10.1016/0022-0728(92)80468-j

Fujiwara, Y., & Enomoto, H. (1988). Characterization of Cu-Zn alloy deposits from glucoheptonate baths. Surface and Coatings Technology, 35(1-2), 113-124. doi:10.1016/0257-8972(88)90062-x

De Filippo, D., Rossi, A., & Atzei, D. (1992). A tartrate-based alloy bath for brass-plated steel wire production. Journal of Applied Electrochemistry, 22(1), 64-72. doi:10.1007/bf01093013

De Vreese, P., Skoczylas, A., Matthijs, E., Fransaer, J., & Binnemans, K. (2013). Electrodeposition of copper–zinc alloys from an ionic liquid-like choline acetate electrolyte. Electrochimica Acta, 108, 788-794. doi:10.1016/j.electacta.2013.06.140

Rousse, C., Beaufils, S., & Fricoteaux, P. (2013). Electrodeposition of Cu–Zn thin films from room temperature ionic liquid. Electrochimica Acta, 107, 624-631. doi:10.1016/j.electacta.2013.06.053

Juškėnas, R., Karpavičienė, V., Pakštas, V., Selskis, A., & Kapočius, V. (2007). Electrochemical and XRD studies of Cu–Zn coatings electrodeposited in solution with d-mannitol. Journal of Electroanalytical Chemistry, 602(2), 237-244. doi:10.1016/j.jelechem.2007.01.004

Barbano, E. P., de Oliveira, G. M., de Carvalho, M. F., & Carlos, I. A. (2014). Copper–tin electrodeposition from an acid solution containing EDTA added. Surface and Coatings Technology, 240, 14-22. doi:10.1016/j.surfcoat.2013.12.005

De Oliveira, G. M., & Carlos, I. A. (2009). Silver–zinc electrodeposition from a thiourea solution with added EDTA or HEDTA. Electrochimica Acta, 54(8), 2155-2163. doi:10.1016/j.electacta.2008.10.012

Cherif, A. T., Elmidaoui, A., & Gavach, C. (1993). Separation of Ag+, Zn2+ and Cu2+ ions by electrodialysis with monovalent cation specific membrane and EDTA. Journal of Membrane Science, 76(1), 39-49. doi:10.1016/0376-7388(93)87003-t

Iizuka, A., Yamashita, Y., Nagasawa, H., Yamasaki, A., & Yanagisawa, Y. (2013). Separation of lithium and cobalt from waste lithium-ion batteries via bipolar membrane electrodialysis coupled with chelation. Separation and Purification Technology, 113, 33-41. doi:10.1016/j.seppur.2013.04.014

Barros, K. S., & Espinosa, D. C. R. (2018). Chronopotentiometry of an anion-exchange membrane for treating a synthesized free-cyanide effluent from brass electrodeposition with EDTA as chelating agent. Separation and Purification Technology, 201, 244-255. doi:10.1016/j.seppur.2018.03.013

Benvenuti, T., Siqueira Rodrigues, M. A., Bernardes, A. M., & Zoppas-Ferreira, J. (2017). Closing the loop in the electroplating industry by electrodialysis. Journal of Cleaner Production, 155, 130-138. doi:10.1016/j.jclepro.2016.05.139

Marder, L., Bernardes, A. M., & Zoppas Ferreira, J. (2004). Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system. Separation and Purification Technology, 37(3), 247-255. doi:10.1016/j.seppur.2003.10.011

Bittencourt, S. D., Marder, L., Benvenuti, T., Ferreira, J. Z., & Bernardes, A. M. (2017). Analysis of different current density conditions in the electrodialysis of zinc electroplating process solution. Separation Science and Technology, 52(13), 2079-2089. doi:10.1080/01496395.2017.1310896

Belova, E. I., Lopatkova, G. Y., Pismenskaya, N. D., Nikonenko, V. V., Larchet, C., & Pourcelly, G. (2006). Effect of Anion-exchange Membrane Surface Properties on Mechanisms of Overlimiting Mass Transfer. The Journal of Physical Chemistry B, 110(27), 13458-13469. doi:10.1021/jp062433f

Pismenskaya, N. D., Nikonenko, V. V., Zabolotsky, V. I., Sandoux, R., Pourcelly, G., & Tskhay, A. A. (2008). Effects of the desalination chamber design on the mass-transfer characteristics of electrodialysis apparatuses at overlimiting current densities. Russian Journal of Electrochemistry, 44(7), 818-827. doi:10.1134/s1023193508070082

Nikonenko, V. V., Kovalenko, A. V., Urtenov, M. K., Pismenskaya, N. D., Han, J., Sistat, P., & Pourcelly, G. (2014). Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination, 342, 85-106. doi:10.1016/j.desal.2014.01.008

Kniaginicheva, E., Pismenskaya, N., Melnikov, S., Belashova, E., Sistat, P., Cretin, M., & Nikonenko, V. (2015). Water splitting at an anion-exchange membrane as studied by impedance spectroscopy. Journal of Membrane Science, 496, 78-83. doi:10.1016/j.memsci.2015.07.050

Lemay, N., Mikhaylin, S., & Bazinet, L. (2019). Voltage spike and electroconvective vortices generation during electrodialysis under pulsed electric field: Impact on demineralization process efficiency and energy consumption. Innovative Food Science & Emerging Technologies, 52, 221-231. doi:10.1016/j.ifset.2018.12.004

Lemay, N., Mikhaylin, S., Mareev, S., Pismenskaya, N., Nikonenko, V., & Bazinet, L. (2020). How demineralization duration by electrodialysis under high frequency pulsed electric field can be the same as in continuous current condition and that for better performances? Journal of Membrane Science, 603, 117878. doi:10.1016/j.memsci.2020.117878

Dufton, G., Mikhaylin, S., Gaaloul, S., & Bazinet, L. (2020). Systematic Study of the Impact of Pulsed Electric Field Parameters (Pulse/Pause Duration and Frequency) on ED Performances during Acid Whey Treatment. Membranes, 10(1), 14. doi:10.3390/membranes10010014

Sosa-Fernandez, P. A., Post, J. W., Ramdlan, M. S., Leermakers, F. A. M., Bruning, H., & Rijnaarts, H. H. M. (2020). Improving the performance of polymer-flooding produced water electrodialysis through the application of pulsed electric field. Desalination, 484, 114424. doi:10.1016/j.desal.2020.114424

Barros, K. S., Scarazzato, T., & Espinosa, D. C. R. (2018). Evaluation of the effect of the solution concentration and membrane morphology on the transport properties of Cu(II) through two monopolar cation–exchange membranes. Separation and Purification Technology, 193, 184-192. doi:10.1016/j.seppur.2017.10.067

Benvenuti, T., Krapf, R. S., Rodrigues, M. A. S., Bernardes, A. M., & Zoppas-Ferreira, J. (2014). Recovery of nickel and water from nickel electroplating wastewater by electrodialysis. Separation and Purification Technology, 129, 106-112. doi:10.1016/j.seppur.2014.04.002

Scarazzato, T., Panossian, Z., Tenório, J. A. S., Pérez-Herranz, V., & Espinosa, D. C. R. (2018). Water reclamation and chemicals recovery from a novel cyanide-free copper plating bath using electrodialysis membrane process. Desalination, 436, 114-124. doi:10.1016/j.desal.2018.01.005

Buzzi, D. C., Viegas, L. S., Rodrigues, M. A. S., Bernardes, A. M., & Tenório, J. A. S. (2013). Water recovery from acid mine drainage by electrodialysis. Minerals Engineering, 40, 82-89. doi:10.1016/j.mineng.2012.08.005

Scarazzato, T., Panossian, Z., García-Gabaldón, M., Ortega, E. M., Tenório, J. A. S., Pérez-Herranz, V., & Espinosa, D. C. R. (2017). Evaluation of the transport properties of copper ions through a heterogeneous ion-exchange membrane in etidronic acid solutions by chronopotentiometry. Journal of Membrane Science, 535, 268-278. doi:10.1016/j.memsci.2017.04.048

Melnikova, E. D., Pismenskaya, N. D., Bazinet, L., Mikhaylin, S., & Nikonenko, V. V. (2018). Effect of ampholyte nature on current-voltage characteristic of anion-exchange membrane. Electrochimica Acta, 285, 185-191. doi:10.1016/j.electacta.2018.07.186

Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2013). Effect of the equilibria of multivalent metal sulfates on the transport through cation-exchange membranes at different current regimes. Journal of Membrane Science, 443, 181-192. doi:10.1016/j.memsci.2013.04.058

Pismenskaya, N., Nikonenko, V., Auclair, B., & Pourcelly, G. (2001). Transport of weak-electrolyte anions through anion exchange membranes. Journal of Membrane Science, 189(1), 129-140. doi:10.1016/s0376-7388(01)00405-7

Zabolotsky, V. I., Nikonenko, V. V., Pismenskaya, N. D., Laktionov, E. V., Urtenov, M. K., Strathmann, H., … Koops, G. H. (1998). Coupled transport phenomena in overlimiting current electrodialysis. Separation and Purification Technology, 14(1-3), 255-267. doi:10.1016/s1383-5866(98)00080-x

Krol, J. (1999). Concentration polarization with monopolar ion exchange membranes: currentâ voltage curves and water dissociation. Journal of Membrane Science, 162(1-2), 145-154. doi:10.1016/s0376-7388(99)00133-7

Belloň, T., Polezhaev, P., Vobecká, L., Svoboda, M., & Slouka, Z. (2019). Experimental observation of phenomena developing on ion-exchange systems during current-voltage curve measurement. Journal of Membrane Science, 572, 607-618. doi:10.1016/j.memsci.2018.11.037

Cifuentes-Araya, N., Astudillo-Castro, C., & Bazinet, L. (2014). Mechanisms of mineral membrane fouling growth modulated by pulsed modes of current during electrodialysis: Evidences of water splitting implications in the appearance of the amorphous phases of magnesium hydroxide and calcium carbonate. Journal of Colloid and Interface Science, 426, 221-234. doi:10.1016/j.jcis.2014.03.054

Bukhovets, A., Eliseeva, T., Dalthrope, N., & Oren, Y. (2011). The influence of current density on the electrochemical properties of anion-exchange membranes in electrodialysis of phenylalanine solution. Electrochimica Acta, 56(27), 10283-10287. doi:10.1016/j.electacta.2011.09.025

Mikhaylin, S., Nikonenko, V., Pismenskaya, N., Pourcelly, G., Choi, S., Kwon, H. J., … Bazinet, L. (2016). How physico-chemical and surface properties of cation-exchange membrane affect membrane scaling and electroconvective vortices: Influence on performance of electrodialysis with pulsed electric field. Desalination, 393, 102-114. doi:10.1016/j.desal.2015.09.011

Gil, V. V., Andreeva, M. A., Jansezian, L., Han, J., Pismenskaya, N. D., Nikonenko, V. V., … Dammak, L. (2018). Impact of heterogeneous cation-exchange membrane surface modification on chronopotentiometric and current–voltage characteristics in NaCl, CaCl2 and MgCl2 solutions. Electrochimica Acta, 281, 472-485. doi:10.1016/j.electacta.2018.05.195

Korzhova, E., Pismenskaya, N., Lopatin, D., Baranov, O., Dammak, L., & Nikonenko, V. (2016). Effect of surface hydrophobization on chronopotentiometric behavior of an AMX anion-exchange membrane at overlimiting currents. Journal of Membrane Science, 500, 161-170. doi:10.1016/j.memsci.2015.11.018

Choi, J. (2001). Pore size characterization of cation-exchange membranes by chronopotentiometry using homologous amine ions. Journal of Membrane Science, 191(1-2), 225-236. doi:10.1016/s0376-7388(01)00513-0

Mareev, S. A., Butylskii, D. Y., Pismenskaya, N. D., & Nikonenko, V. V. (2016). Chronopotentiometry of ion-exchange membranes in the overlimiting current range. Transition time for a finite-length diffusion layer: modeling and experiment. Journal of Membrane Science, 500, 171-179. doi:10.1016/j.memsci.2015.11.026

Rubinstein, I., Zaltzman, B., & Pundik, T. (2002). Ion-exchange funneling in thin-film coating modification of heterogeneous electrodialysis membranes. Physical Review E, 65(4). doi:10.1103/physreve.65.041507

Andreeva, M. A., Gil, V. V., Pismenskaya, N. D., Nikonenko, V. V., Dammak, L., Larchet, C., … Kononenko, N. A. (2017). Effect of homogenization and hydrophobization of a cation-exchange membrane surface on its scaling in the presence of calcium and magnesium chlorides during electrodialysis. Journal of Membrane Science, 540, 183-191. doi:10.1016/j.memsci.2017.06.030

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem