- -

Computational optical imaging with a photonic lantern

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational optical imaging with a photonic lantern

Mostrar el registro completo del ítem

Choudhury, D.; Mcnicholl, DK.; Repetti, A.; Gris-Sánchez, I.; Li, S.; Phillips, DB.; Whyte, G.... (2020). Computational optical imaging with a photonic lantern. Nature Communications. 11(1):1-9. https://doi.org/10.1038/s41467-020-18818-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176106

Ficheros en el ítem

Metadatos del ítem

Título: Computational optical imaging with a photonic lantern
Autor: Choudhury, Debaditya McNicholl, Duncan K. Repetti, Audrey Gris-Sánchez, Itandehui Li, Shuhui Phillips, David B. Whyte, Graeme Birks, Tim A. Wiaux, Yves Thomson, Robert R.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[EN] The thin and flexible nature of optical fibres often makes them the ideal technology to view biological processes in-vivo, but current microendoscopic approaches are limited in spatial resolution. Here, we demonstrate ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Nature Communications. (issn: 2041-1723 )
DOI: 10.1038/s41467-020-18818-6
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41467-020-18818-6
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/804626/EU/Rendering the opaque transparent: Untangling light with bespoke optical transforms to see through scattering environments/
...[+]
info:eu-repo/grantAgreement/EC/H2020/804626/EU/Rendering the opaque transparent: Untangling light with bespoke optical transforms to see through scattering environments/
info:eu-repo/grantAgreement/STFC//ST%2FN000625%2F1/
info:eu-repo/grantAgreement/EPSRC//EP%2FK03197X%2F1/
info:eu-repo/grantAgreement/STFC//ST%2FK006509%2F1/
info:eu-repo/grantAgreement/STFC//ST%2FK006460%2F1/
info:eu-repo/grantAgreement/STFC//ST%2FN000544%2F1/
info:eu-repo/grantAgreement/NSFC//61705073/
[-]
Agradecimientos:
This work was funded through the "Proteus" Engineering and Physical Sciences Research Council (EPSRC) Interdisciplinary Research Collaboration (IRC) (EP/K03197X/1), by the Science and Technology Facilities Council (STFC) ...[+]
Tipo: Artículo

References

Wood, H. A. C., Harrington, K., Birks, T. A., Knight, J. C. & Stone, J. M. High-resolution air-clad imaging fibers. Opt. Lett. 43, 5311–5314 (2018).

Akram, A. R. et al. In situ identification of Gram-negative bacteria in human lungs using a topical fluorescent peptide targeting lipid A. Sci. Transl. Med. 10, eaal0033 (2018).

Shin, J., Bosworth, B. T. & Foster, M. A. Compressive fluorescence imaging using a multi-core fiber and spatially dependent scattering. Opt. Lett. 42, 109–112 (2017). [+]
Wood, H. A. C., Harrington, K., Birks, T. A., Knight, J. C. & Stone, J. M. High-resolution air-clad imaging fibers. Opt. Lett. 43, 5311–5314 (2018).

Akram, A. R. et al. In situ identification of Gram-negative bacteria in human lungs using a topical fluorescent peptide targeting lipid A. Sci. Transl. Med. 10, eaal0033 (2018).

Shin, J., Bosworth, B. T. & Foster, M. A. Compressive fluorescence imaging using a multi-core fiber and spatially dependent scattering. Opt. Lett. 42, 109–112 (2017).

Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express 20, 10583–10590 (2012).

Čižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 3, 1027 (2012).

Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nat. Photon. 9, 529–535 (2015).

Birks, T. A., Gris-Sánchez, I., Yerolatsitis, S., Leon-Saval, S. G. & Thomson, R. R. The photonic lantern. Adv. Opt. Photon. 7, 107–167 (2015).

Birks, T. A., Mangan, B. J., Díez, A., Cruz, J. L. & Murphy, D. F. Photonic lantern’ spectral filters in multi-core fiber. Opt. Express 20, 13996–14008 (2012).

Edgar, M. P., Gibson, G. M. & Padgett, M. J. Principles and prospects for single-pixel imaging. Nat. Photon. 13, 13–20 (2019).

Mahalati, R. N., Yu, Gu. R. & Kahn, J. M. Resolution limits for imaging through multi-mode fiber. Opt. Express 21, 1656–1668 (2013).

Amitonova, L. V. & de Boer, J. F. Compressive imaging through a multimode fiber. Opt. Lett. 43, 5427–5430 (2018).

Mallat, S. A Wavelet Tour of Signal Processing 2nd edn (Academic Press, Burlington, MA, 2009).

Lustig, M., Donoho, D. & Pauly, J. M. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195 (2007).

Davies, M., Puy, G., Vandergheynst, P. & Wiaux, Y. A compressed sensing framework for magnetic resonance fingerprinting. SIAM J. Imaging Sci. 7, 2623–2656 (2014).

Wiaux, Y., Puy, G., Scaife, A. M. M. & Vandergheynst, P. Compressed sensing imaging techniques in radio interferometry. Mon. Not. R. Astron. Soc. 395, 1733–1742 (2009).

Carrillo, R. E., McEwen, J. D. & Wiaux, Y. Sparsity averaging reweighted analysis (SARA): a novel algorithm for radio-interferometric imaging. Mon. Not. R. Astron. Soc. 426, 1223–1234 (2012).

Katz, O., Bromberg, Y. & Silberberg, Y. Compressive ghost imaging. Appl. Phys. Lett. 95, 131110 (2009).

Sun, B., Welsh, S. S., Edgar, M. P., Shapiro, J. H. & Padgett, M. J. Normalized ghost imaging. Opt. Express 20, 16892–16901 (2012).

Kim, M., Park, C., Rodriguez, C., Park, Y. & Cho, Y.-H. Superresolution imaging with optical fluctuation using speckle patterns illumination. Sci. Rep. 5, 16525 (2015).

Combettes, P. L. & Pesquet, J. -C. in Fixed-Point Algorithms for Inverse Problems in Science and Engineering (Springer, New York, 2011).

Komodakis, N. & Pesquet, J.-C. Playing with duality: an overview of recent primal dual approaches for solving large-scale optimization problems. IEEE Signal Proc. Mag. 32, 31–54 (2015).

Chandrasekharan, H. K. et al. Multiplexed single-mode wavelength-to-time mapping of multimode light. Nat. Commun. 8, 14080 (2017).

Wadsworth, W. J. et al. Very high numerical aperture fibers. Photon. Technol. Lett. 16, 843–845 (2004).

Pesquet, J.-C. & Repetti, A. A class of randomized primal-dual algorithms for distributed optimization. J. Nonlinear Convex Anal. 16, 2353–2490 (2015).

Chambolle, A., Ehrhardt, M. J., Richtárik, P. & Schönlieb, C.-B. Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications. SIAM J. Optim. 28, 2783–2808 (2018).

Bolte, J., Sabach, S. & Teboulle, M. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146, 459–494 (2014).

Chouzenoux, E., Pesquet, J.-C. & Repetti, A. A block coordinate variable metric forward-backward algorithm. J. Glob. Optim. 66, 457–485 (2016).

Flusberg, B. A. et al. Fiber-optic fluorescence imaging. Nat. Methods 2, 941–950 (2005).

Tsvirkun, V. et al. Bending-induced inter-core group delays in multicore fibers. Opt. Express 25, 31863–31875 (2017).

Candès, E. J., Wakin, M. B. & Boyd, S. Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl. 14, 877–905 (2008).

Condat, L. A primal–dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158, 460–479 (2013).

Vu, B. C. A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comp. Math. 38, 667–681 (2013).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem