- -

Pancreatic duct ligation reduces premalignant pancreatic lesions in a Kras model of pancreatic adenocarcinoma in mice

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pancreatic duct ligation reduces premalignant pancreatic lesions in a Kras model of pancreatic adenocarcinoma in mice

Mostrar el registro completo del ítem

Cáceres, M.; Quesada, R.; Iglesias, M.; Real, FX.; Villamonte, M.; Martinez De Villarreal, J.; Pérez, M.... (2020). Pancreatic duct ligation reduces premalignant pancreatic lesions in a Kras model of pancreatic adenocarcinoma in mice. Scientific Reports. 10(1):1-12. https://doi.org/10.1038/s41598-020-74947-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176168

Ficheros en el ítem

Metadatos del ítem

Título: Pancreatic duct ligation reduces premalignant pancreatic lesions in a Kras model of pancreatic adenocarcinoma in mice
Autor: Cáceres, Marta Quesada, Rita Iglesias, Mar Real, Francisco X. Villamonte, Maria Martinez de Villarreal, Jaime Pérez, Mónica Andaluz, Ana Moll, Xavier Berjano, Enrique Dorcaratto, Dimitri Sánchez Velazquez, Patricia Grande, Luis Burdío, Fernando
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Pancreatic duct ligation (PDL) in the murine model has been described as an exocrine pancreatic atrophy-inducing procedure. However, its influence has scarcely been described on premalignant lesions. This study describes ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-020-74947-4
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-020-74947-4
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//RTI2018-094357-B-C22//INVESTIGACION QUIRURGICA PARA TERAPIAS ABLATIVAS INNOVADORAS/
Agradecimientos:
This work was supported by the Spanish Ministerio de Economia, Industria y Competitividad under "Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad", Grant No "RTI2018-094357-B-C22".[+]
Tipo: Artículo

References

Mattiuzzi, C. & Lippi, G. Current cancer epidemiology. J. Epidemiol. Glob. Health 9, 217–222 (2019).

Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res. 74, 2913–2921 (2014).

Han, H. & Von Hoff, D. D. SnapShot: Pancreatic cancer. Cancer Cell 23, 424-424.e1 (2013). [+]
Mattiuzzi, C. & Lippi, G. Current cancer epidemiology. J. Epidemiol. Glob. Health 9, 217–222 (2019).

Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res. 74, 2913–2921 (2014).

Han, H. & Von Hoff, D. D. SnapShot: Pancreatic cancer. Cancer Cell 23, 424-424.e1 (2013).

Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

Shen, R. et al. The biological features of PanIN initiated from oncogenic Kras mutation in genetically engineered mouse models. Cancer Lett. 339, 135–143 (2013).

Aichler, M. et al. Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: A comparative study in transgenic mice and human tissues. J. Pathol. 226, 723–734 (2012).

Esposito, I., Konukiewitz, B., Schlitter, A. M. & Klöppel, G. New insights into the origin of pancreatic cancer. Role of atypical flat lesions in pancreatic carcinogenesis. Pathologe 33, 189–193 (2012).

Esposito, I., Konukiewitz, B., Schlitter, A. M. & Klöppel, G. Pathology of pancreatic ductal adenocarcinoma: Facts, challenges and future developments. World J. Gastroenterol. 20, 13833–13841 (2014).

Löhr, M., Klöppel, G., Maisonneuve, P., Lowenfels, A. B. & Lüttges, J. Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: A meta-analysis. Neoplasia 7, 17–23 (2005).

Almoguera, C. et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53, 549–554 (1988).

Wilentz, R. E., Argani, P. & Hruban, R. H. Loss of heterozygosity or intragenic mutation, which comes first?. Am. J. Pathol. 158, 1561–1563 (2001).

Schmitt, E., Paquet, C., Beauchemin, M. & Bertrand, R. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J. Zhejiang Univ. Sci. B 8, 377–397 (2007).

Schuler, M., Bossy-wetzel, E., Goldstein, J. C., Fitzgerald, P. & Green, D. R. P53 induces apoptosis by caspase activation through mitochondrial cytochrome C release. J. Biol. Chem. 275, 7337–7342 (2000).

Brune, K. et al. Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. Am. J. Surg. Pathol. 30, 1067–1076 (2006).

Maitra, A. et al. Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod. Pathol. 16, 902–912 (2003).

Wada, M., Doi, R., Hosotani, R., Lee, J. U. & Imamura, M. Apoptosis of acinar cells in rat pancreatic duct ligation. J. Gastroenterol. 30, 813–814 (1995).

Walker, N. I. Ultrastructure of the rat pancreas after experimental duct ligation. I. The role of apoptosis and intraepithelial macrophages in acinar cell deletion. Am. J. Pathol. 126, 439–451 (1987).

Scoggins, C. R. et al. p53-Dependent acinar cell apoptosis triggers epithelial proliferation in duct-ligated murine pancreas. Am. J. Physiol. Gastrointest. Liver Physiol. 270, 827–836 (2000).

Watanabe, S., Abe, K., Anbo, Y. & Katoh, H. Changes in the mouse exocrine pancreas after pancreatic duct ligation: A qualitative and quantitative histological study. Arch. Histol. Cytol. 58, 365–374 (1995).

Quesada, R. et al. Radiofrequency pancreatic ablation and section of the main pancreatic duct does not lead to necrotizing pancreatitis. Pancreas 43, 1–7 (2014).

Quesada, R. et al. Long-term evolution of acinar-to-ductal metaplasia and β-cell mass after radiofrequency-assisted transection of the pancreas in a controlled large animal model. Pancreatology 16, 1–6 (2015).

Guerra, C. et al. Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4, 111–120 (2003).

Guerra, C. et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell https://doi.org/10.1016/j.ccr.2007.01.012 (2007).

De Groef, S. et al. Surgical injury to the mouse pancreas through ligation of the pancreatic duct as a model for endocrine and exocrine reprogramming and proliferation. J. Vis. Exp. https://doi.org/10.3791/52765 (2015).

Hruban, R. H. et al. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: Consensus report and recommendations. Cancer Res. 66, 95–106 (2006).

Hruban, R. H., Maitra, A. & Goggins, M. Update on pancreatic intraepithelial neoplasia. Int. J. Clin. Exp. Pathol. 1, 306–316 (2008).

Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Select. Works Terry Speed 4, 601–616 (2012).

Kauffmann, A., Gentleman, R. & Huber, W. arrayQualityMetrics—A bioconductor package for quality assessment of microarray data. Bioinformatics 25, 415–416 (2009).

Carvalho, B. S. & Irizarry, R. A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).

James W. MacDonald. Affycoretools: Functions useful for those doing repetitive analyses with Affymetrix GeneChips. R package version 1.56.0. (2010).

Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

Fromm, D. & Schwarz, K. Ligation of the pancreatic duct during difficult operative circumstances. J. Am. Coll. Surg. 197, 943–948 (2003).

Sato, N. et al. Long-term morphological changes of remnant pancreas and biliary tree after pancreatoduodenectomy on CT. Int. Surg. 83, 136–140 (1998).

Tomimaru, Y. et al. Comparison of postoperative morphological changes in remnant pancreas between pancreaticojejunostomy and pancreaticogastrostomy after pancreaticoduodenectomy. Pancreas 38, 203–207 (2009).

Burdío, F. et al. Radiofrequency-induced heating versus mechanical stapler for pancreatic stump closure: In vivo comparative study. Int. J. Hyperth. 32, 2 (2016).

Nusse, R. Molecular biology of cancer genes. Trends Genet. 7, 103 (2003).

Bhatia, M. Apoptosis of pancreatic acinar cells in acute pancreatitis: Is it good or bad?. J. Cell Mol. Med. 8, 402–409 (2004).

Chu, L. C., Goggins, M. G. & Fishman, E. K. Diagnosis and detection of pancreatic cancer. Cancer J. 23, 333–342 (2020).

Takahashi, S. et al. Apoptosis and mitosis of parenchymal cells in the duct-ligated rat submandibular gland. Tissue Cell 32, 457–463 (2000).

Shi, C. et al. Differential cell susceptibilities to Kras in the setting of obstructive chronic pancreatitis. Cell. Mol. Gastroenterol. Hepatol. https://doi.org/10.1016/j.jcmgh.2019.07.001 (2019).

Cheng, T. et al. Ductal obstruction promotes formation of preneoplastic lesions from the pancreatic ductal compartment. Int. J. Cancer 144, 2529–2538 (2019).

Makawita, S. et al. Validation of four candidate pancreatic cancer serological biomarkers that improve the performance of CA19.9. BMC Cancer https://doi.org/10.1186/1471-2407-13-404 (2013).

Cheung, W. et al. Application of a global proteomic approach to archival precursor lesions: Deleted in malignant brain tumors 1 and tissue transglutaminase 2 are upregulated in pancreatic cancer precursors. Pancreatology 8, 608–616 (2008).

Kontos, C. K., Mavridis, K., Talieri, M. & Scorilas, A. Kallikrein-related peptidases (KLKs) in gastrointestinal cancer: Mechanistic and clinical aspects. Thromb. Haemost. 110, 450–457 (2013).

Hamidi, T. et al. Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis. J. Clin. Invest 122, 2092–3103 (2012).

Cano, C. E. et al. Genetic inactivation of Nupr1 acts as a dominant suppressor event in a two-hit model of pancreatic carcinogenesis. Gut 63, 984–995 (2014).

Grasso, D. et al. Genetic inactivation of the pancreatitis-inducible gene Nupr1 impairs PanIN formation by modulating KrasG12D-induced senescence. Cell Death Differ. https://doi.org/10.1038/cdd.2014.74 (2014).

Basturk, O. et al. A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am. J. Surg. Pathol. 39, 1730–1741 (2015).

Guerra, C. & Barbacid, M. Genetically engineered mouse models of pancreatic adenocarcinoma. Mol. Oncol. 7, 232–247 (2013).

Sharma, S. & Green, K. B. The pancreatic duct and its arteriovenous relationship. Am. J. Surg. Pathol. 28, 613–620 (2004).

Pérez-Mancera, P. A., Guerra, C., Barbacid, M. & Tuveson, D. A. What we have learned about pancreatic cancer from mouse models. Gastroenterology 142, 1079–1092 (2012).

von Figura, G., Morris, J. P., Wright, C. V. E. & Hebrok, M. Nr5a2 maintains acinar cell differentiation and constrains oncogenic Kras-mediated pancreatic neoplastic initiation. Gut 63, 656–664 (2014).

Andaluz, A. et al. Endoluminal radiofrequency ablation of the main pancreatic duct is a secure and effective method to produce pancreatic atrophy and to achieve stump closure. Sci. Rep. https://doi.org/10.1038/s41598-019-42411-7 (2019).

Wood, L. D., Yurgelun, M. B. & Goggins, M. G. Genetics of familial and sporadic pancreatic cancer. Gastroenterology 156, 2041–2055 (2019).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem