- -

Enzymatic Glucose Based Bio batteries: Bioenergy to Fuel Next Generation Devices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enzymatic Glucose Based Bio batteries: Bioenergy to Fuel Next Generation Devices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Buaki-Sogo, Mireia es_ES
dc.contributor.author García-Carmona, Laura es_ES
dc.contributor.author Gil Agustí, María Teresa es_ES
dc.contributor.author Zubizarreta Saenz De Zaitegui, Leire es_ES
dc.contributor.author GARCÍA PELLICER, MARTA es_ES
dc.contributor.author Quijano-Lopez, Alfredo es_ES
dc.date.accessioned 2021-11-05T14:06:07Z
dc.date.available 2021-11-05T14:06:07Z
dc.date.issued 2020-10-30 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176226
dc.description.abstract [EN] This article consists of a review of the main concepts and paradigms established in the field of biological fuel cells or biofuel cells. The aim is to provide an overview of the current panorama, basic concepts, and methodologies used in the field of enzymatic biofuel cells, as well as the applications of these bio-systems in flexible electronics and implantable or portable devices. Finally, the challenges needing to be addressed in the development of biofuel cells capable of supplying power to small size devices with applications in areas related to health and well-being or next-generation portable devices are analyzed. The aim of this study is to contribute to biofuel cell technology development; this is a multidisciplinary topic about which review articles related to different scientific areas, from Materials Science to technology applications, can be found. With this article, the authors intend to reach a wide readership in order to spread biofuel cell technology for different scientific profiles and boost new contributions and developments to overcome future challenges. es_ES
dc.description.sponsorship Financial support from the Spanish Ministry of Science, Innovation and University, through the State Program for Talent and Employability Promotion 2013-2016 by means of Torres Quevedo research contract in the framework of Bio2 project (PTQ-14-07145) and from the Instituto Valenciano de Competitividad Empresarial-IVACE-GVA (BioSensCell project) es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Topics in Current Chemistry (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Glucose biofuel cells es_ES
dc.subject Energy harvesting es_ES
dc.subject Enzyme immobilization es_ES
dc.subject Bioenergy es_ES
dc.subject Implantable devices es_ES
dc.subject Flexible electronics es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Enzymatic Glucose Based Bio batteries: Bioenergy to Fuel Next Generation Devices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s41061-020-00312-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PTQ-14-07145/ES/PTQ-14-07145/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología Eléctrica - Institut de Tecnologia Elèctrica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Buaki-Sogo, M.; García-Carmona, L.; Gil Agustí, MT.; Zubizarreta Saenz De Zaitegui, L.; García Pellicer, M.; Quijano-Lopez, A. (2020). Enzymatic Glucose Based Bio batteries: Bioenergy to Fuel Next Generation Devices. Topics in Current Chemistry (Online). 378(6):1-28. https://doi.org/10.1007/s41061-020-00312-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s41061-020-00312-8 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 28 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 378 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2364-8961 es_ES
dc.identifier.pmid 33125588 es_ES
dc.relation.pasarela S\431205 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Schlögl R (2015) The revolution continues: Energiewende 2.0. Angew Chem Int Ed 54:4436–4439 es_ES
dc.description.references Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457–1486 es_ES
dc.description.references Wang ZL, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chem Int Ed 51:11700-11721 es_ES
dc.description.references Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Léger J-M (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283 es_ES
dc.description.references Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu Z-S, Wang H, Shen J (2007) A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. J Power Sources 165:739 es_ES
dc.description.references Boudghere Stambouli A, Traversa E (2002) Solid oxide fuel cells (SOFC): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 6:433–455 es_ES
dc.description.references Qiao Y, Li CM (2011) Nanostructured catalyst in fuel cells. J Mater Chem 21:4027–4036 es_ES
dc.description.references Edwards PP, Kuznetsov VL, David WIF, Brandon NP (2008) Hydrogen and fuel cells: towards sustainable energy future. Energy Policy 36:4356–4362 es_ES
dc.description.references Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy 13:2430–2440 es_ES
dc.description.references Kerzenmacher S, Ducree J, Zengerle R, von Stetten F (2008) An abiotically catalyzed glucose fuel cell for powering medical implants: reconstructed manufacturing protocol and analysis of performance. J Power Sources 182:66–75 es_ES
dc.description.references Drake RF, Kusserow BK, Messinger S, Matsuda S (1970) A tissue implantable fuel cell power supply. Trans Am Soc Artif Intern Organs 16:199–205 es_ES
dc.description.references Giner J, Holleck G, Malachesky PA (1973) Eine implantierbare Brennstoffzelle zum Betrieb eines mechanischen Herzens. Phys Chem 77:782–783. https://doi.org/10.1002/bbpc.19730771009 es_ES
dc.description.references Cosnier S, LeGoff A, Holzinger M (2014) Towards glucose biofuel cells implanted in human body for powering artificial organs: review. Electrochem Commun 38:19–23 es_ES
dc.description.references Katz E (2015) Implantable biofuel cells operating in vivo—potential power sources for bioelectronic devices. Bioelectron Med 2:1–12 es_ES
dc.description.references Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006a) Biofuel cells and their development . Biosens Bioelectron 21:2015–2045 es_ES
dc.description.references Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD (2008) Enzyme catalysed biofuel cells. Energy Environ Sci 1:320–337 es_ES
dc.description.references Cracknell JA, Vincent KA, Armstrong FA (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem Rev 108:2439–2461 es_ES
dc.description.references Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307 es_ES
dc.description.references Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006b) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045 es_ES
dc.description.references Koch C, Popiel D, Harnisch F (2014) Functional redundancy of microbial anodes fed by domestic wastewater. ChemElectroChem 1:1923–1931 es_ES
dc.description.references Mano N, Mao F, Heller A (2003) Characteristics of a miniature compartment-less glucose−O2 biofuel cell and its operation in a living plant. J Am Chem Soc 125(21):6588–6594 es_ES
dc.description.references Mano N, Mao F, Heller A (2002) A miniature biofuel cell operating in a physiological buffer. J Am Chem Soc 124(44):12962–12963 es_ES
dc.description.references Bruen D, Delaney C, Florea L, Diamond D (2017) Glucose sensing for diabetes monitoring: recent developments. Sensors 17:1866 es_ES
dc.description.references Falk M, Blum Z, Shleev S (2012) Direct electron transfer based enzymatic fuel cells. Electrochim Acta 82:191–202 es_ES
dc.description.references White HB (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7:101–104 es_ES
dc.description.references Broderick JB (2001) Coenzymes and cofactors. In: eLS. Wiley, Chichester. https://www.els.net. https://doi.org/10.1038/npg.els.0000631 es_ES
dc.description.references Sakurai T, Kataoka K (2007) Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem Rec 7:220–229 es_ES
dc.description.references Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Glucose oxidase—an overview. Biotech Adv 27:489–501 es_ES
dc.description.references Ferri S, Kojima K, Sode K (2011) Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes. J Diabetes Sci Technol 5:1068–1076 es_ES
dc.description.references Katz E, MacVittie K (2013) Implanted biofuel cells operating in vivo—methods, applications and perspectives—feature article. Energy Environ Sci 6:2791–2803 es_ES
dc.description.references Ghindilis AL, Atanasov P, Wilkins E (1997) Enzyme catalysed direct electron transfer: fundamentals and analytical applications. Electroanalysis 9:661–674 es_ES
dc.description.references Von Woedtke Th, Fisher U, Abel P (1994) Glucose oxidase electrodes: effect of H2O2 on enzyme activity? Biosens Bioelectron 9:65–71 es_ES
dc.description.references Kleppe K (1966) The effect of H2O2 on glucose oxidase from Aspergillus niger. Biochemistry 5:139–143 es_ES
dc.description.references Zebda A, Godran C, Le Goff A, Holzinger M, Cinquin P, Cosnier S (2011) Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat Commun 2:370 es_ES
dc.description.references Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672 es_ES
dc.description.references Angione MD, Pilolli R, Cotrone S, Magliulo M, Mallardi A, Palazzo G, Sabbatini L, Fine D, Dodabalapur A, Lioffi N, Torsi L (2011) Carbon based nanomaterials for electronic bio-sensing. Mat Today 14:424–433 es_ES
dc.description.references Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7:2891–2897 es_ES
dc.description.references Wang Z, Dai Z (2015) Carbon nanomaterials-based electrochemical biosensors: an overview. Nanoscale 7:6420–6431 es_ES
dc.description.references Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics and sensing. Chem Soc Rev 42:2824–2860 es_ES
dc.description.references Babadi AA, Bagheri S, Abdul Hamid SB (2016) Progress on implantable biofuel cell: nano-carbon functionalization for enzyme immobilization enhancement. Biosens Bioelectron 15:850–860 es_ES
dc.description.references Osadebe I, Leech D (2014) Effect of multi-walled carbon nanotubes on glucose oxidation by glucose oxidase or a flavin-dependent glucose dehydrogenase in redox-polymer-mediated enzymatic fuel cell anodes. ChemElectroChem 1:1988–1993 es_ES
dc.description.references Si P, Huang Y, Wang T, Ma J (2013) Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 3:3487–3502 es_ES
dc.description.references Putzbach W, Ronkainen NJ (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 13(4):4811–4840 es_ES
dc.description.references Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A (2013) Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 1:4878–4908 es_ES
dc.description.references Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3(1):1–9 es_ES
dc.description.references Ivanov I, Vidaković-Koch T, Sundmaker K (2010) Recent advances in enzymatic fuel cells; experiments and modelling. Energies 3:803–846 es_ES
dc.description.references Nguyen HH, Kim M (2017) An overview of techniques in enzyme immobilization. Appl Sci Converg Technol 26(6):157–163 es_ES
dc.description.references Fu J, Reinhold J, Woodbury NW (2011) Peptide-modified surfaces for enzyme immobilization. PLoS One 6(4):e18692 es_ES
dc.description.references Lee DH, Park CH, Yeo JM, Kim SW (2006) Lipase immobilization on silica gel using a cross-linking method. J Ind Eng Chem 12(5):777–782 es_ES
dc.description.references Szymańska K, Bryjak J, Jarzębski AB (2009) Immobilization of invertase on mesoporous silicas to obtain hyper active biocatalysts. Top Catal 52:1030–1036 es_ES
dc.description.references Al-Lolage F, Meneghello M, Ma S, Ludwig R, Barlett PN (2017) A flexible method for the stable, covalent immobilization of enzymes at electrode surfaces. ChemElectroChem 4:1528–1534 es_ES
dc.description.references Gutierrez-Sanchez C, Shleev S, De Lacey AL, Pita M (2015) Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode. Chem Pap 69:237–240 es_ES
dc.description.references Pita M, Gutierrez-Sanchez C, Toscano MD, Shleev S, De Lacey AL (2013) Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode. Bioelectrochemistry 94:69–74 es_ES
dc.description.references Vaz-Dominguez C, Campuzano S, Rüdiger O, Pita M, Gorbacheva M, Shleev S, Fernandez VM, de Lacey LA (2008) Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Biosens Bioelectron 24(4):531–537 es_ES
dc.description.references Gutiérrez-Sánchez C, Jia W, Beyl Y, Pita M, Schuhmann W, de Lacey LA, Stoica L (2012) Enhanced direct electron transfer between laccase and hierarchical carbon microfibers/carbon nanotubes composite electrodes. Comparison of three enzyme immobilization methods. Electrochim Acta 82:218–223 es_ES
dc.description.references Lv Y, Jin S, Wang Y, Lun Z, Xia C (2016) Recent advances in the application of nanomaterials in enzymatic glucose sensors. J Iran Chem Soc 13(10):1767–1776 es_ES
dc.description.references Zhao C, Gai P, Song R, Chen Y, Zhang J, Zhu J-J (2017) Nanostructured material-based biofuel cells: recent advances and future prospects. Chem Soc Rev 46:1545–1564 es_ES
dc.description.references Yu EH, Scott K (2010) Enzymatic biofuel cells—fabrication of enzyme electrodes. Energies 3:23–42 es_ES
dc.description.references Minteer SD, Atanassov P, Luckarift HR, Johnson GR (2013) New materials for biological fuel cells. Mater Today 15(4):166–173 es_ES
dc.description.references Sarma AK, Vatsyayan P, Goswami P, Minteer SD (2009) Recent advances in material science for developing enzyme electrodes. Biosens Bioelectron 24:2313–2322 es_ES
dc.description.references Jesionowski T, Zdarta J, Krajewska B (2014) Enzyme immobilization by adsorption: a review. Adsorption 20:801–821 es_ES
dc.description.references Sardar M, Gupta MN (2005) Immobilization of tomato pectinase on Con A-Seralose 4B by bioaffinity layering. Enzyme Microbial Technol 37:355–359 es_ES
dc.description.references Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92:467–477 es_ES
dc.description.references Velasco-Lozano S, López-Gallego F, Mateos-Díaz JC, Favela-Torres E (2015) Cross-linked enzyme aggregates (CLEA) in enzyme improvement—a review. Biocatalysis 1:166–177 es_ES
dc.description.references Cosnier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosen Bioelectron 14:443–456 es_ES
dc.description.references Heller A (1990) Electrical wiring of redox enzymes. Acc Chem Res 29:128–134 es_ES
dc.description.references Heller A (1992) Electrical connection of enzyme redox centres to electrodes. J Phys Chem 96:3579–3587 es_ES
dc.description.references Martins MVA, Pereira AR, Luz RAS, Iost RM, Crespilho FN (2014) Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes. Phys Chem Chem Phys 16:17426–17436 es_ES
dc.description.references Luz RAS, Pereira AR, de Souza JCP, Sales FCPF, Crespilho FN (2014) Enzyme biofuel cells: thermodynamics. Kinetics and challenges in applicability. ChemElectroChem 1(11):1751–1777 es_ES
dc.description.references Neto SA, De Andrade AR (2013) New energy sources: the enzymatic biofuel cell. J Braz Chem Soc 24(12):1891–1912 es_ES
dc.description.references Rapoport BI, Kedzierski JT, Sarpeshkar R (2012) A glucose fuel cell for implantable brain–machine interfaces. PLoS One 7(6):6 e38436 es_ES
dc.description.references Zebda A, Alcaraz J-P, Vadgama P, Shleev S, Minteer SD, Boucher F, Cinquin P, Martin DK (2018) Challenges for successful implantation of biofuel cells. Bioelectrochemistry 124:57–72 es_ES
dc.description.references Ferraris RP, Diamond J (1997) Regulation of intestinal sugar transport. Physiol Rev 77:257–301 es_ES
dc.description.references Sprague JE, Arbeláez AM (2011) Glucose counterregulatory responses to hypoglicemia. Pediatr Endocrinol Rev 9:463–475 es_ES
dc.description.references Slaughter G, Kulkarni T (2019) Detection of human plasma glucose using a self-powered glucose biosensor. Energies 12:825 es_ES
dc.description.references Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep 5:35–54 es_ES
dc.description.references Koushanpour A, Gamella M, Katz E (2017) A biofuel cell based on biocatalytic reactions of lactate on both anode and cathode electrodes—extracting electrical power from human sweat. Electroanalysis 29:1602–1611 es_ES
dc.description.references Yao Y, Li H, Wang D, Liu C, Zhang C (2017) An electrochemiluminescence cloth-based biosensor with smartphone-based imaging for detection of lactate in saliva. Analyst 142:3715–3724 es_ES
dc.description.references Pankratov D, González-Arribas E, Blum Z, Shleev S (2016) Tear based bioelectronics. Electroanalysis 28:1250–1266 es_ES
dc.description.references Krogstad AL, Jansson PA, Gisslen P, Lönnroth P (1996) Microdialysis methodology for the measurement of dermal interstitial fluid in humans. Br J Dermatol 134(6):1005–1012 es_ES
dc.description.references Bandodkar AJ, Wang J (2016) Wearable biofuel cells: a review. Electroanalysis 28:1188–1200 es_ES
dc.description.references Jia W, Valdés-Ramírez G, Bandodkar AJ, Windmiller JR, Wang J (2013) Epidermal biofuel cells: energy harvesting from human perspiration. Angew Chem Int Ed 52:1–5 es_ES
dc.description.references Jeerapan I, Sempionatto JR, Pavinatto A, You J-M, Wang J (2016) Stretchable biofuel cells as wearable textile-based self-powered sensors. J Mater Chem A 4:18342–18353 es_ES
dc.description.references Valdés-Ramírez G, Li Y-G, Kima J, Jia W, Bandodkar AJ, Nuñez-Flores R, Miller PR, Wu S-Y, Narayan R, Windmiller JR, Polsky R, Wang J (2016) Microneedle-based self-powered glucose sensor. Electrochem Commun 47:58–62 es_ES
dc.description.references Gamella M, Koushanpour A, Katz E (2018) Biofuel cells—activation of micro- and macro- electronic devices. Bioelectrochemistry 119:33–42 es_ES
dc.description.references Mano N, Mao F, Shin W, Chen T, Heller A (2003) A miniature biofuel cell operating at 0.78 V. Chem Commun 20:518–519 es_ES
dc.description.references Shi B, Li Z, Fan Y (2018) Implantable energy harvesting devices. Adv Mater 30:1801511 es_ES
dc.description.references MacVittie K, Halámek J, Halámková L, Southcott M, Jemison WD, Lobel R, Katz E (2013) From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci 6:81–86 es_ES
dc.description.references Szczupak A, Halámek J, Halámková L, Bocharova V, Alfonta L, Katz E (2012) Living battery—biofuel cells operating in vivo in clams. Energy Environ Sci 5:8891–8895 es_ES
dc.description.references Southcott M, MacVittie K, Halámek J, Halámková L, Jemison WD, Lobel R, Katz E (2013) A pacemaker powered by an implantable biofuel cell operating under conditions mimicking the human blood circulatory system—battery not included. Phys Chem Chem Phys 15:6278–6283 es_ES
dc.description.references MacVittie K, Conlon T, Katz E (2015) A wireless transmission system powered by an enzyme biofuel cell implanted in an orange. Bioelectrochemistry 106:28–33 es_ES
dc.description.references Aghahosseini H, Ramazani A, Asiabi PA, Gouranlou F, Hosseini F, Rezaei A, Min B-K, Joo SW (2016) Glucose-based biofuel cells: nanotechnology as a vital science in biofuel cell performance. Nanochem Res 1(2):83–204 es_ES
dc.description.references Zebda A, Cosnier S, Alcaraz J-P, Holzinger M, Le Goff A, Gondran C, Boucher F, Giroud F, Gorgy K, Lamraoui H, Cinquin P (2013) Single glucose biofuel cells implanted in rats power electronic devices. Sci Rep 2013:1516 es_ES
dc.description.references Ichi-Ribault SE, Alcaraz J-P, Boucher F, Boutaud B, Dalmolin R, Boutonnat J, Cinquin P, Zebda A, Martin DK (2018) Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months. Electrochim Acta 269:360–366 es_ES
dc.description.references Bandodkar A (2017) Review—wearable biofuel cells: past, present and future. J Electrochem Soc 164(3):H3007–H3014 es_ES
dc.description.references Coman V, Ludwig R, Harreither W, Haltrich D, Gorton L, Ruzgas T, Shleev S (2010) A direct electron transfer-based glucose/oxygen biofuel cell operating in human serum. Fuel Cells 10(1):9–16 es_ES
dc.description.references Shoji K, Akiyama Y, Suzuki M, Nakamura N, Ohno H, Morishima K (2016) Biofuel cell backpacked insect and its application to wireless sensing. Biosens Bioelectron 78:390–395 es_ES
dc.description.references Reuillard B, Abreu C, Lalaoui N, Le Goff A, Holzinger M, Ondel O, Buret F, Cosnier S (2015) One-year stability for a glucose/oxygen biofuel cell combined with pH reactivation of the laccase/carbon nanotube biocathode. Bioelectrochemistry 106:73–76 es_ES
dc.description.references Sales FCPF, Iost RM, Martins MVA, Almeida MC, Crespilho FN (2013) An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab Chip 13:468 es_ES
dc.description.references Falk M, Narvez Villarrubia CW, Babanova S, Atanassov P, Shleev S (2013) Biofuel cells for biomedical applications: colonizing the animal kingdom. ChemPhysChem 14:2045–2058 es_ES
dc.description.references Rasmussen M, Ritzmann RE, Lee I, Pollack AJ, Scherson D (2012) An implantable biofuel cell for a live insect. J Am Chem Soc 134(3):1458–1460 es_ES
dc.description.references Halámková L, Halámek J, Bocharova V, Szczupak A, Alfonta L, Katz E (2012) Implanted biofuel cell operating in a living snail. J Am Chem Soc 134:5040–5043 es_ES
dc.description.references Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellisier A, Boucher F, Alcaraz J-P, Gorgy K, Lenouvel F, Mathé S, Porcu P, Cosnier S (2010) A glucose biofuel cell implanted in rats. Plos One 5(5):e010476 es_ES
dc.description.references Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan S, Yao S (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3:4473–4491 es_ES
dc.description.references Andoralov V, Falk M, Suyatin DB, Granmo M, Sotres J, Ludwig R, Popov VO, Schouenborg J, Blum Z, Shleev S (2013) Biofuel cell based on microscale nanostructured electrodes with inductive coupling to rat brain neurons es_ES
dc.description.references Verbeek MM, Leen WG, Willemsen MA, Slats D, Claassen JA (2016) Hourly analysis of cerebrospinal fluid glucose shows large diurnal fluctuations. J Cereb Blood F Met 36(5):899–902 es_ES
dc.description.references González-Guerrero MJ, Del Campo FJ, Esquivel JP, Leech D, Sabaté N (2017) Paper-based microfluidic biofuel cell operating under glucose concentrations within physiological range. Biosens Bioelectron 90:475–480 es_ES
dc.description.references Takeuchi ES, Leising RA (2002) Lithium batteries for biomedical applications. MRS Bull 27(8):624–627 es_ES
dc.description.references Bock DC, Marschilok A, Takeuchi KJ, Takeuchi ES (2012) Batteries used to power implantable biomedical devices. Electrochim Acta 84:155–164 es_ES
dc.description.references Greatbatch W, Lee JH, Mathias W, Eldridge M, Moser JR, Schneider AA (1971) The solid-state lithium battery: a new improved chemical power source for implantable cardiac pacemaker. IEEE Trans Biomed Eng 18(5):317–324 es_ES
dc.description.references Liu Y, Dong S (2007) A biofuel cell with enhanced power output by grape juice. Electrochem Commun 9(7):1423–1427 es_ES
dc.description.references Choi S, Lee H, Ghaffari R, Hyeon T, Kim D-H (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28:4203–4218 es_ES
dc.description.references Zhou L, Mao J, Ren Y, Han ST, Roy VAL, Zhou Y (2018) Recent advances of flexible data storage devices based on organic nanoscale materials. Small 14(10):1703126 es_ES
dc.description.references Gwon H, Kim H-S, Lee KU, Seo D-H, Park YC, Lee Y-S, Ahn BT, Kong K (2011) Flexible energy storage devices based on graphene paper. Energy Environ Sci 4:1277–1283 es_ES
dc.description.references Pang C, Lee C, Suh K-Y (2013) Recent advances in flexible sensors for wearable and implantable devices. J Appl Pol Sci 130:1429–1441 es_ES
dc.description.references Bandodkar AJ, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotech 32(7):363–371 es_ES
dc.description.references Bandodkar AJ, Uia W, Wang J (2015) Tatto-based wearable electrochemical devices: a review. Electroanalysis 27(3):562–572 es_ES
dc.description.references Reid RC, Minteer SD, Gale BK (2015) Contact lens biofuel cell tested in a synthetic tear solution. Biosens Bioelectron 68:142 es_ES
dc.description.references Falk M, Andoralov V, Blum Z, Sotres J, Suyatin DM, Ruzgas T, Arnebrant T, Shleev S (2012) Biofuel cells as a power source for electronic contact lenses. Biosens Bioelectron 37(1):38–45 es_ES
dc.description.references Falk M, Andoralov V, Silow M, Toscano MD, Shleev S (2013) Miniature biofuel cell as a potential power source for Glucose-sensing contact lenses. Anal Chem 85(13):6342–6348 es_ES
dc.description.references Reid R, Jones SR, Hickey DP, Minteer SD, Gale BK (2016) Modeling carbon nanotubes connectivity and surface activity in a contact lens biofuel cell. Electrochim Acta 203:30–40 es_ES
dc.description.references Blum Z, Pankratov D, Shleev S (2014) Powering electronic contact lenses: current achievements, challenges and perspective. Expert Rev Ophthalmol 9(4):269–273 es_ES
dc.description.references Xiao X, Siepenkoetter T, Conghaile PÓ, Leech D, Magner E (2018) Nanoporous gold-based biofuel cell on contact lenses. ACS Appl Mater Interfaces 10(8):7107–7116 es_ES
dc.description.references Yang X-Y, Tian G, Jiang N, Su B-L (2012) Immobilization technology: a sustainable solution for biofuel cell design. Ener Environ Sci 5:5540–5563 es_ES
dc.description.references Mano N (2019) Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry 128:218–240 es_ES
dc.description.references Mate DM, Gonzalez-Perez D, Falk M, Kittl R, Pita M, De Lacey LA, Ludwig R, Shleev S, Alcalde M (2013) Blood tolerant caccase by directed evolution. Chem Biol 20:223–231 es_ES
dc.description.references Zhang L, Carucci C, Reculusa S, Goudeau B, Lefrançois P, Gounel S, Mano N, Kuhn A (2019) Rational design of enzyme-modified electrodes for optimized bioelectrocatalytic activity. ChemElectroChem 6(19):4980–4984 es_ES
dc.description.references Arechederra MN, Addo PK, Minteer SD (2011) Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: towards the development of a rechargeable biobattery. Electrochim Acta 56:1585 es_ES
dc.description.references Yang Y, Wang ZL (2015) Hybrid energy cells for simultaneously harvesting multi-types of energies. NanoEnergy 14:245–256 es_ES
dc.description.references Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4:3647 es_ES
dc.description.references Song K, Han JH, Lim T, Kim N, Shin S, Kim J, Choo H, Jeong S, Kim Y-C, Wang ZL, Lee J (2016) Subdermal flexible solar cell arrays for powering medical electronic implants. Adv Healthc Mater 5:1572–1580 es_ES
dc.description.references Nasar A, Perveen R (2019) Applications of enzymatic biofuel cells in bioelectronic devices—a review. Int J Hydrogen Energy 44:15287–15312 es_ES
dc.description.references Zhao M, Gao Y, Sun J, Gao F (2015) Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots. Anal Chem 87:2615–2622 es_ES
dc.description.references Bandodkar AJ, You J-M, Kim N-H, Gu Y, Kumar R, Mohan AMV, Kurniawan J, Imani S, Nakagawa T, Parish B, Parthasarathy M, Mercier PP, Xu S, Wang J (2017) Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat. Energy Environ Sci 10:1581–1589 es_ES
dc.description.references Bautista MG, Dutkiewicz E, Heimlich M (2015) Subthreshold energy harvesters circuits for biomedical implants applications. BODYNETS 2015, September 28–30, Sydney, Australia. https://doi.org/10.4108/eai.28-9-2015.2261402 es_ES
dc.description.references Flipsen B, Bremer A, Jansen A, Veefkind M (2004) Proceedings of the TMCE 2004, April 12–16, Lausanne, Switzerland es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem