- -

Paths of the cervical instantaneous axis of rotation during active movements-patterns and reliability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Paths of the cervical instantaneous axis of rotation during active movements-patterns and reliability

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Venegas, William es_ES
dc.contributor.author Inglés, Marta es_ES
dc.contributor.author Page Del Pozo, Alvaro Felipe es_ES
dc.contributor.author Serra-Añó, Pilar es_ES
dc.date.accessioned 2021-11-05T14:10:13Z
dc.date.available 2021-11-05T14:10:13Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 0140-0118 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176404
dc.description.abstract [EN] The instantaneous helical axis (IHA) is a characteristic of neck movement that is very sensitive to changes in coordination and that has potential in the assessment of functional alterations. For its application in the clinical setting, normative patterns must be available, and its reliability must be established. The purpose of this work is to describe the continuous paths of the IHA during cyclic movements of flexion-extension (FE), lateral bending (LB), and axial rotation (AR) and to quantify their reliability. Fifteen healthy volunteers participated in the study; two repetitions were made on the same day (by different operators) and over an 8-day interval (by the same operator) to evaluate the inter-operator and inter-session reliability, respectively. The paths described by the IHA suggest a sequential movement of the vertebrae in the FE movement, with a large vertical displacement (mean, 10 cm). The IHA displacement in LB and AR movements are smaller. The paths described by the IHAs have a very high reliability for FE movement, although it is somewhat lower for LB and RA movements. The standard error of measurement (SEM) is less than 0.5 cm. These results show that the paths of the IHA are reliable enough to evaluate changes in the coordination of intervertebral movement. es_ES
dc.description.sponsorship This work was partially supported by the Spanish Government and co-financed by EU FEDER funds (Grant DPI2017-84201-R). The work of W. Venegas was supported by the Escuela Politecnica Nacional de Quito (Proj. PIJ-1508). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Medical & Biological Engineering & Computing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Human movement analysis es_ES
dc.subject Kinematics es_ES
dc.subject Neck es_ES
dc.subject Instantaneous helical axis es_ES
dc.subject Intervertebral coordination es_ES
dc.subject Reliability es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Paths of the cervical instantaneous axis of rotation during active movements-patterns and reliability es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11517-020-02153-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84201-R/ES/INTEGRACION DE MODELOS BIOMECANICOS EN EL DESARROLLO Y OPERACION DE ROBOTS REHABILITADORES RECONFIGURABLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Escuela Politécnica Nacional//Proyecto de investigación Junior PIJ-15-08//Modelado biomecánico del cuello basado en la imagen cinemática de la función articular para su aplicación en tecnologías para la salud y el bienestar del ser humano/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//DPI2017-84201-R//Integración de modelos biomecánicos en el desarrollo y operación de robots rehabilitadores reconfigurables/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biomecánica de Valencia - Institut Universitari Mixt de Biomecànica de València es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Venegas, W.; Inglés, M.; Page Del Pozo, AF.; Serra-Añó, P. (2020). Paths of the cervical instantaneous axis of rotation during active movements-patterns and reliability. Medical & Biological Engineering & Computing. 58(5):1147-1157. https://doi.org/10.1007/s11517-020-02153-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11517-020-02153-5 es_ES
dc.description.upvformatpinicio 1147 es_ES
dc.description.upvformatpfin 1157 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 58 es_ES
dc.description.issue 5 es_ES
dc.identifier.pmid 32193862 es_ES
dc.relation.pasarela S\425992 es_ES
dc.contributor.funder Escuela Politécnica Nacional es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Snodgrass SJ, Cleland JA, Haskins R, Rivett DA et al (2014) The clinical utility of cervical range of motion in diagnosis, prognosis, and evaluating the effects of manipulation: a systematic review. Physiotherapy 100:290–304 es_ES
dc.description.references Stenneberg MS, Rood M, de Bie R et al (2017) To what degree does active cervical range of motion differ between patients with neck pain, patients with whiplash, and those without neck pain? A systematic review and meta-analysis. Arch Phys Med Rehabil 8:1407–1434 es_ES
dc.description.references van Trijffel E, Anderegg Q, Bossuyt PMM, Lucas C (2005) Inter-examiner reliability of passive assessment of intervertebral motion in the cervical and lumbar spine: a systematic review. Man Ther 10:256–269 es_ES
dc.description.references Bahat HS, Chen X, Reznik D et al (2015) Interactive cervical motion kinematics: sensitivity. specificity and clinically significant values for identifying kinematic impairments in patients with chronic neck pain. Man Ther 20:295–302 es_ES
dc.description.references Baydal-Bertomeu JM, Page AF, Belda-Lois JM, Garrido-Jaén D, Prat JM (2011) Neck motion patterns in whiplash-associated disorders: quantifying variability and spontaneity of movement. Clin Biomech 26:29–34 es_ES
dc.description.references Röijezon U, Djupsjöbacka M, Björklund M et al (2010) Kinematics of fast cervical rotations in persons with chronic neck pain: a cross-sectional and reliability study. BMC Musculoskelet Disord 11:222 es_ES
dc.description.references Sjölander P, Michaelson P, Jaric S, Djupsjöbacka M (2008) Sensorimotor disturbances in chronic neck pain—range of motion, peak velocity, smoothness of movement, and repositioning acuity. Man Ther 13:122–131 es_ES
dc.description.references Michiels S, De Hertogh W, Truijen S et al (2013) The assessment of cervical sensory motor control: a systematic review focusing on measuring methods and their clinimetric characteristics. Gait Posture 38:1–7 es_ES
dc.description.references de Zoete RM, Osmotherly PG, Rivett DA, Farrell SF, Snodgrass SJ (2017) Sensorimotor control in individuals with idiopathic neck pain and healthy individuals: a systematic review and meta-analysis. Arch Phys Med Rehabil 98:1257–1271 es_ES
dc.description.references Woltring HJ, Long K, Osterbauer PJ, Fuhr AW (1994) Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics. J Biomech 27:1415–1432 es_ES
dc.description.references Anderst WJ, Donaldson WF, Lee JY, Kang JD (2015) Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading. J Biomech 48:1286–1293 es_ES
dc.description.references Baillargeon E, Anderst WJ (2013) Sensitivity, reliability and accuracy of the instant center of rotation calculation in the cervical spine during in vivo dynamic flexion-extension. J Biomech 46:670–676 es_ES
dc.description.references Bogduk N, Mercer S (2000) Biomechanics of the cervical spine. I: Normal kinematics. Clin Biomech 15:633–648 es_ES
dc.description.references Page A, de Rosario H, Mata V, Porcar R, Solaz J, Such MJ (2009) Kinematics of the trunk in sitting posture: an analysis based on the instantaneous axis of rotation. Ergonomics 52:695–706 es_ES
dc.description.references Page A, de Rosario H, Gálvez JA, Mata V (2011) Representation of planar motion of complex joints by means of rolling pairs. Application to neck motion. J Biomech 44:747–750 es_ES
dc.description.references Ellingson AM, Yelisetti V, Schulz CA, Bronfort G, Downing J, Keefe DF, Nuckley DJ (2013) Instantaneous helical axis methodology to identify aberrant neck motion. Clin Biomech 28:731–735 es_ES
dc.description.references Grip H, Sundelin G, Gerdle B, Karlsson JS (2007) Variations in the axis of motion during head repositioning–a comparison of subjects with whiplash-associated disorders or non-specific neck pain and healthy controls. Clin Biomech 22:865–873 es_ES
dc.description.references Grip H, Sundelin G, Gerdle B, Karlsson JS (2008) Cervical helical axis characteristics and its center of rotation during active head and upper arm movements—comparisons of whiplash-associated disorders, non-specific neck pain and asymptomatic individuals. J Biomech 41:2799–2805 es_ES
dc.description.references Alsultan F, Cescon C, De Nunzio A et al (2019) Variability of the helical axis during active cervical movements in people with chronic neck pain. Clin Biomech 62:50–57 es_ES
dc.description.references Barbero M, Falla D, Clijsen R, Ghirlanda F, Schneebeli A, Ernst MJ, Cescon C (2017) Can parameters of the helical axis be measured reliably during active cervical movements? Musculoskelet Sci Pract 27:150–154 es_ES
dc.description.references Li ZM (2004) Functional degrees of freedom. Mot Control 10:301–310 es_ES
dc.description.references Page A, Galvez JA, de Rosario H, Mata V, Prat J (2010) Optimal average path of the instantaneous helical axis in planar motions with one functional degree of freedom. J Biomech 43:375–378 es_ES
dc.description.references Page A, de Rosario H, Mata V et al (2006) Effect of marker cluster design on the accuracy of human movement analysis using stereophotogrammetry. Med Biol Eng Comput 44:1113 es_ES
dc.description.references Díaz-Rodríguez M, Valera A, Page A et al (2016) Dynamic parameter identification of subject-specific body segment parameters using robotics formalism: case study head complex. J Biomech Eng 138:051009 es_ES
dc.description.references Page A, de Rosario H, Mata V, Atienza C (2009) Experimental analysis of rigid body motion. A vector method to determine finite and infinitesimal displacements from point coordinates. J Mech Des 131:031005 es_ES
dc.description.references Woltring HJ (1994) 3-D attitude representation of human joints: a standardization proposal. J Biomech 27:1399–1414 es_ES
dc.description.references Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D'Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I, Standardization and Terminology Committee of the International Society of Biomechanics (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech 35:543–548 es_ES
dc.description.references Weir JP (2005) Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 19:231–240 es_ES
dc.description.references Garofalo P, Cutti AG, Filipi MV et al (2009) Inter-operator reliability and prediction bands of a novel protocol to measure the coordinated movements of shoulder-girdle and humerus inc clinical settings. Med Biol Eng Comput 47:475–486 es_ES
dc.description.references Duhamel A, Bourriez JL, Devos P, Krystkowiak P, Destée A, Derambure P, Defebvre L (2004) Statistical tools for clinical gait analysis. Gait Posture 20:204–212 es_ES
dc.description.references Jaspers E, Feys H, Bruyninckx H, Harlaar J, Molenaers G, Desloovere K (2011) Upper limb kinematics: development and reliability of a clinical protocol for children. Gait Posture 33:279–285 es_ES
dc.description.references Jordan K (2000) Assessment of published reliability studies for cervical spine range-of-motion measurement tools. J Manip Physiol Ther 23:180–195 es_ES
dc.description.references de Koning CH, van den Heuvel SP, Staal JB, Smits-Engelsman BC, Hendriks EJ (2008) Clinimetric evaluation of active range of motion measures in patients with non-specific neck pain: a systematic review. Eur Spine J 17:905–921 es_ES
dc.description.references Williams MA, McCarthy CJ, Chorti A et al (2010) A systematic review of reliability and validity studies of methods for measuring active and passive cervical range of motion. J Manip Physiol Ther 33:138–155 es_ES
dc.description.references Tsang SM, Szeto GP, Lee RY (2013) Movement coordination and differential kinematics of the cervical and thoracic spines in people with chronic neck pain. Clin Biomech 28:610–617 es_ES
dc.description.references Michiels S, Hallemans A, Van de Heyning P et al (2014) Measurement of cervical sensorimotor control: the reliability of a continuous linear movement test. Man Ther 19:399–404 es_ES
dc.description.references Bahat HS, Sprecher E, Sela I, Treleaven J (2016) Neck motion kinematics: an inter-tester reliability study using an interactive neck VR assessment in asymptomatic individuals. Eur Spine J 25:2139–2148 es_ES
dc.description.references Assink N, Bergman GJ, Knoester B et al (2005) Interobserver reliability of neck-mobility measurement by means of the flock-of-birds electromagnetic tracking system. J Manip Physiol Ther 28:408–413 es_ES
dc.description.references Anderst W, Baillargeon E, Donaldson W, Lee J, Kang J (2013) Motion path of the instant center of rotation in the cervical spine during in vivo dynamic flexion-extension: implications for artificial disc design and evaluation of motion quality following arthrodesis. Spine 38:E594–E601 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem