- -

Opportunities in intelligent modeling assistance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Opportunities in intelligent modeling assistance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mussbacher, Gunter es_ES
dc.contributor.author Combemale, Benoit es_ES
dc.contributor.author Kienzle, Jorg es_ES
dc.contributor.author Abrahao Gonzales, Silvia Mara es_ES
dc.contributor.author Ali, Hyacinth es_ES
dc.contributor.author Bencomo, Nelly es_ES
dc.contributor.author Bur, Marton es_ES
dc.contributor.author Burgueño, Loli es_ES
dc.contributor.author Engels, Gregor es_ES
dc.contributor.author Jeanjean, Pierre es_ES
dc.contributor.author Jezequel, Jean-Marc es_ES
dc.contributor.author Kuhn, Thomas es_ES
dc.contributor.author Mosser, Sebastien es_ES
dc.contributor.author Sahraoui, Houari es_ES
dc.contributor.author Syriani, Eugene es_ES
dc.contributor.author Varro, Daniel es_ES
dc.contributor.author Weyssow, Martin es_ES
dc.date.accessioned 2021-11-05T14:12:00Z
dc.date.available 2021-11-05T14:12:00Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 1619-1366 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176485
dc.description.abstract [EN] Modeling is requiring increasingly larger efforts while becoming indispensable given the complexity of the problems we are solving. Modelers face high cognitive load to understand a multitude of complex abstractions and their relationships. There is an urgent need to better support tool builders to ultimately provide modelers with intelligent modeling assistance that learns from previous modeling experiences, automatically derives modeling knowledge, and provides context-aware assistance. However, current intelligent modeling assistants (IMAs) lack adaptability and flexibility for tool builders, and do not facilitate understanding the differences and commonalities of IMAs for modelers. Such a patchwork of limited IMAs is a lost opportunity to provide modelers with better support for the creative and rigorous aspects of software engineering. In this expert voice, we present a conceptual reference framework (RF-IMA) and its properties to identify the foundations for intelligent modeling assistance. For tool builders, RF-IMA aims to help build IMAs more systematically. For modelers, RF-IMA aims to facilitate comprehension, comparison, and integration of IMAs, and ultimately to provide more intelligent support. We envision a momentum in the modeling community that leads to the implementation of RF-IMA and consequently future IMAs. We identify open challenges that need to be addressed to realize the opportunities provided by intelligent modeling assistance. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Software & Systems Modeling es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Model-based software engineering es_ES
dc.subject Intelligent modeling assistance es_ES
dc.subject Integrated development environment es_ES
dc.subject Artificial intelligence es_ES
dc.subject Development data es_ES
dc.subject Feedback es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Opportunities in intelligent modeling assistance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10270-020-00814-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84550-R/ES/ADAPTACION DINAMICA DE SERVICIOS CLOUD CENTRADA EN EL USUARIO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Mussbacher, G.; Combemale, B.; Kienzle, J.; Abrahao Gonzales, SM.; Ali, H.; Bencomo, N.; Bur, M.... (2020). Opportunities in intelligent modeling assistance. Software & Systems Modeling. 19(5):1045-1053. https://doi.org/10.1007/s10270-020-00814-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10270-020-00814-5 es_ES
dc.description.upvformatpinicio 1045 es_ES
dc.description.upvformatpfin 1053 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\428665 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references AI4AUI: Workshop on AI Methods for Adaptive User Interfaces (2020). https://doi.org/10.1145/3306307.3328180 es_ES
dc.description.references Agt-Rickauer, H., Kutsche, R., Sack, H.: Domore—a recommender system for domain modeling. In: Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD’18), pp. 71–82 (2018). https://doi.org/10.5220/0006555700710082 es_ES
dc.description.references Bakar, N.H., Kasirun, Z.M., Salleh, N.: Feature extraction approaches from natural language requirements for reuse in software product lines: a systematic literature review. J. Syst. Softw. 106(C), 132–149 (2015). https://doi.org/10.1016/j.jss.2015.05.006 es_ES
dc.description.references Baki, I., Sahraoui, H.A.: Multi-step learning and adaptive search for learning complex model transformations from examples. ACM Trans. Softw. Eng. Methodol. 25(3), 20:1–20:37 (2016) es_ES
dc.description.references Beth Kery, M., Myers, B.A.: Exploring exploratory programming. In: 2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 25–29 (2017) es_ES
dc.description.references Bruch, M., Monperrus, M., Mezini, M.: Learning from examples to improve code completion systems. In: van Vliet, H., Issarny, V. (eds.) Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2009, Amsterdam, The Netherlands, August 24–28, 2009, pp. 213–222. ACM (2009). https://doi.org/10.1145/1595696.1595728 es_ES
dc.description.references Bucchiarone, A., Cabot, J., Paige, R., Pierantonio, A.: Grand challenges in model-driven engineering: an analysis of the state of the research. Softw. Syst. Model. 19, 1–9 (2020). https://doi.org/10.1007/s10270-019-00773-6 es_ES
dc.description.references Burgueño, L., Cabot, J., Gérard, S.: An LSTM-based neural network architecture for model transformations. In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 294–299. IEEE (2019) es_ES
dc.description.references Combemale, B., Kienzle, J., Mussbacher, G., Ali, H., Amyot, D., et al.: A Hitchhiker’s guide to model-driven engineering for data-centric systems. IEEE Softw. (2020). https://doi.org/10.1109/MS.2020.2995125. https://hal.inria.fr/hal-02612087 es_ES
dc.description.references Danylenko, A., Löwe, W.: Context-aware recommender systems for non-functional requirements. In: 2012 Third International Workshop on Recommendation Systems for Software Engineering (RSSE), pp. 80–84 (2012). https://doi.org/10.1109/RSSE.2012.6233417 es_ES
dc.description.references Derakhshanmanesh, M., Ebert, J., Grieger, M., Engels, G.: Model-integrating development of software systems: a flexible component-based approach. Softw. Syst. Model. 18(4), 2557–2586 (2019) es_ES
dc.description.references Elkamel, A., Gzara, M., Ben-Abdallah, H.: An UML class recommender system for software design. In: 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), pp. 1–8 (2016). https://doi.org/10.1109/AICCSA.2016.7945659 es_ES
dc.description.references France, R., Rumpe, B.: Model-driven development of complex software: a research roadmap. In: Future of Software Engineering (FOSE ’07), pp. 37–54 (2007) es_ES
dc.description.references Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: International Conference on Advanced Information Systems Engineering (CAISE), pp. 482–496. Springer, Berlin (2011) es_ES
dc.description.references Hartmann, T., Moawad, A., Fouquet, F., Le Traon, Y.: The next evolution of MDE: a seamless integration of machine learning into domain modeling. In: 2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 180–180 (2017). https://doi.org/10.1109/MODELS.2017.32 es_ES
dc.description.references Ibrahim, M., Ahmad, R.: Class diagram extraction from textual requirements using natural language processing (NLP) techniques. In: Proceedings of the 2nd International Conference on Computer Research and Development, pp. 200–204 (2010). https://doi.org/10.1109/ICCRD.2010.71 es_ES
dc.description.references Josifovska, K., Yigitbas, E., Engels, G.: A digital twin-based multi-modal UI adaptation framework for assistance systems in industry 4.0. In: HCI (3), Lecture Notes in Computer Science, vol. 11568, pp. 398–409. Springer, Berlin (2019) es_ES
dc.description.references Kaiser, G.E., Feiler, P.H., Popovich, S.S.: Intelligent assistance for software development and maintenance. IEEE Softw. 5(3), 40–49 (1988). https://doi.org/10.1109/52.2023 es_ES
dc.description.references Karimi, J., Konsynsky, B.R.: An automated software design assistant. IEEE Trans. Softw. Eng. 14(2), 194–210 (1988). https://doi.org/10.1109/32.4638 es_ES
dc.description.references Kienzle, J., Mussbacher, G., Combemale, B., Bastin, L., Bencomo, N., et al.: Towards model-driven sustainability evaluation. Commun. ACM 63(3), 80–91 (2020). https://doi.org/10.1145/3371906 es_ES
dc.description.references Knuth, D.E.: Literate programming. Comput. J. 27(2), 97–111 (1984). https://doi.org/10.1093/comjnl/27.2.97 es_ES
dc.description.references Kögel, S.: Recommender system for model driven software development. In: 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, pp. 1026–1029. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3106237.3119874 es_ES
dc.description.references Kuschke, T., Mäder, P.: Pattern-based auto-completion of uml modeling activities. In: Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering, ASE ’14, pp. 551–556. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2642937.2642949 es_ES
dc.description.references Liew, A.: DIKIW: data, information, knowledge, intelligence, wisdom and their interrelationships. Bus. Manag. Dyn. 2, 49 (2013) es_ES
dc.description.references Liu, C., Yang, D., Zhang, X., Ray, B., Rahman, M.M.: Recommending github projects for developer onboarding. IEEE Access 6, 52082–52094 (2018). https://doi.org/10.1109/ACCESS.2018.2869207 es_ES
dc.description.references Mazak, A., Wolny, S., Wimmer, M.: On the need for data-based model-driven engineering, pp. 103–127 (2019). https://doi.org/10.1007/978-3-030-25312-7_5 es_ES
dc.description.references McDirmid, S.: Living it up with a live programming language. In: Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems and Applications, OOPSLA ’07, pp. 623–638. Association for Computing Machinery, New York (2007). https://doi.org/10.1145/1297027.1297073 es_ES
dc.description.references Mendix Assist: https://www.mendix.com/blog/introducing-ai-assisted-development-to-elevate-low-code-platforms-to-the-next-level es_ES
dc.description.references Mussbacher, G., Amyot, D., Breu, R., Bruel, J.M., Cheng, B., et al.: The relevance of model-driven engineering 30 years from now (2014). https://doi.org/10.1007/978-3-319-11653-2_12 es_ES
dc.description.references Pérez-Soler, S., Daniel, G., Cabot, J., Guerra, E., de Lara, J.: Towards automating the synthesis of chatbots for conversational model query. In: Proceedings of the International Conference on Exploring Modeling Methods for Systems Analysis and Development (2020). (To appear) es_ES
dc.description.references Pérez-Soler, S., Guerra, E., de Lara, J.: Collaborative modeling and group decision making using chatbots in social networks. IEEE Softw. 35(6), 48–54 (2018). https://doi.org/10.1109/MS.2018.290101511 es_ES
dc.description.references Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook, pp. 1–35. Springer US, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_1 es_ES
dc.description.references Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T.: Recommendation Systems in Software Engineering. Springer Publishing Company, Incorporated, Berlin (2014) es_ES
dc.description.references Rocha, A., Papa, J.P., Meira, L.A.A.: How far you can get using machine learning black-boxes. In: 2010 23rd SIBGRAPI Conference on Graphics, Patterns and Images, pp. 193–200 (2010). https://doi.org/10.1109/SIBGRAPI.2010.34 es_ES
dc.description.references Rovatsos, M., Weiss, G.: Autonomous Software, pp. 63–84. https://doi.org/10.1142/9789812775245_0003 es_ES
dc.description.references Sen, S., Baudry, B., Vangheluwe, H.: Towards domain-specific model editors with automatic model completion. Simulation 86(2), 109–126 (2010). https://doi.org/10.1177/0037549709340530 es_ES
dc.description.references ServiceStudio from OutSystems: https://www.outsystems.com/ai es_ES
dc.description.references Silva, R., Roy, C., Rahman, M., Schneider, K., Paixao, K., Maia, M.: Recommending comprehensive solutions for programming tasks by mining crowd knowledge. In: 27th International Conference on Program Comprehension (ICPC), pp. 358–368. IEEE, Association for Computing Machinery (2019) es_ES
dc.description.references Subramaniam, K., Liu, D., Far, B.H., Eberlein, A.: UCDA: use case driven development assistant tool for class model generation. In: SEKE (2004) es_ES
dc.description.references Svyatkovskiy, A., Zhao, Y., Fu, S., Sundaresan, N.: Pythia: AI-assisted code completion system. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’19, pp. 2727–2735. Association for Computing Machinery (2019). https://doi.org/10.1145/3292500.3330699 es_ES
dc.description.references Thummalapenta, S., Xie, T.: Parseweb: a programmer assistant for reusing open source code on the web. In: Proceedings of the Twenty-Second IEEE/ACM International Conference on Automated Software Engineering, ASE ’07, pp. 204–213. Association for Computing Machinery, New York (2007). https://doi.org/10.1145/1321631.1321663 es_ES
dc.description.references Timm, I.J., Knirsch, P., Kreowski, H.J., Timm-Giel, A.: Autonomy in Software Systems, pp. 255–273. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-47450-0_17 es_ES
dc.description.references Tran, Q., Chung, L.: NFR-assistant: tool support for achieving quality. In: Proceedings 1999 IEEE Symposium on Application-Specific Systems and Software Engineering and Technology. ASSET’99 (Cat. No.PR00122), pp. 284–289 (1999). https://doi.org/10.1109/ASSET.1999.756782 es_ES
dc.description.references Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven engineering. IEEE Softw. 31(3), 79–85 (2014) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem