- -

Hydrogen production via microwave-induced water splitting at low temperature

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hydrogen production via microwave-induced water splitting at low temperature

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.contributor.author Borras-Morell, J. F. es_ES
dc.contributor.author García-Baños, Beatriz es_ES
dc.contributor.author Balaguer Ramirez, Maria es_ES
dc.contributor.author Plaza González, Pedro José es_ES
dc.contributor.author Santos-Blasco, J. es_ES
dc.contributor.author Catalán-Martínez, David es_ES
dc.contributor.author Navarrete Algaba, Laura es_ES
dc.contributor.author Catalá Civera, José Manuel es_ES
dc.date.accessioned 2021-11-05T14:12:55Z
dc.date.available 2021-11-05T14:12:55Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176525
dc.description.abstract [EN] Hydrogen is a promising vector in the decarbonization of energy systems, but more efficient and scalable synthesis is required to enable its widespread deployment. Towards that aim, Serra et al. present a microwave-based approach that allows contactless water electrolysis that can be integrated with hydrocarbon production. Supplying global energy demand with CO2-free technologies is becoming feasible thanks to the rising affordability of renewable resources. Hydrogen is a promising vector in the decarbonization of energy systems, but more efficient and scalable synthesis is required to enable its widespread deployment. Here we report contactless H-2 production via water electrolysis mediated by the microwave-triggered redox activation of solid-state ionic materials at low temperatures (<250 degrees C). Water was reduced via reaction with non-equilibrium gadolinium-doped CeO2 that was previously in situ electrochemically deoxygenated by the sole application of microwaves. The microwave-driven reduction was identified by an instantaneous electrical conductivity rise and O-2 release. This process was cyclable, whereas H-2 yield and energy efficiency were material- and power-dependent. Deoxygenation of low-energy molecules (H2O or CO2) led to the formation of energy carriers and enabled CH4 production when integrated with a Sabatier reactor. This method could be extended to other reactions such as intensified hydrocarbons synthesis or oxidation. es_ES
dc.description.sponsorship This work was supported by the Spanish Government (RTI2018-102161, SEV-2016-0683 and Juan de la Cierva grant IJCI-2017-34110). We thank the support of the Electronic Microscopy Service of the Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Energy es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Hydrogen production via microwave-induced water splitting at low temperature es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41560-020-00720-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102161-B-I00/ES/CONVERSION DIRECTA DE CO2 EN PORTADORES DE ENERGIA QUIMICA UTILIZANDO REACTORES ELECTROCATALITICOS DE MEMBRANA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD//SEV-2016-0683//Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//IJCI-2017-34110/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Serra Alfaro, JM.; Borras-Morell, JF.; García-Baños, B.; Balaguer Ramirez, M.; Plaza González, PJ.; Santos-Blasco, J.; Catalán-Martínez, D.... (2020). Hydrogen production via microwave-induced water splitting at low temperature. Nature Energy. 5(11):910-919. https://doi.org/10.1038/s41560-020-00720-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41560-020-00720-6 es_ES
dc.description.upvformatpinicio 910 es_ES
dc.description.upvformatpfin 919 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2058-7546 es_ES
dc.relation.pasarela S\425644 es_ES
dc.contributor.funder MINECO es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD es_ES
dc.description.references Serra, J. M. Electrifying chemistry with protonic cells. Nat. Energy 4, 178–179 (2019). es_ES
dc.description.references Wei, M., McMillan, C. A. & de la Rue du Can, S. Electrification of industry: potential, challenges and outlook. Curr. Sustain. Energy Rep. 6, 140–148 (2019). es_ES
dc.description.references Malerød-Fjeld, H. et al. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nat. Energy 2, 923–931 (2017). es_ES
dc.description.references Schiffer, Z. J. & Manthiram, K. Electrification and decarbonization of the chemical industry. Joule 1, 10–14 (2017). es_ES
dc.description.references Ran, J., Zhang, J., Yu, J., Jaroniec, M. & Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787–7812 (2014). es_ES
dc.description.references Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009). es_ES
dc.description.references Vøllestad, E. et al. Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nat. Mater. 18, 752–759 (2019). es_ES
dc.description.references Duan, C. et al. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 4, 230–240 (2019). es_ES
dc.description.references Service, R. F. New electrolyzer splits water on the cheap. Science 367, 1181 (2020). es_ES
dc.description.references Hamzehlouia, S., Jaffer, S. A. & Chaouki, J. Microwave heating-assisted catalytic dry reforming of methane to syngas. Sci. Rep. 8, 8940 (2018). es_ES
dc.description.references Tsukahara, Y. et al. In situ observation of nonequilibrium local heating as an origin of special effect of microwave on chemistry. J. Phys. Chem. C 114, 8965–8970 (2010). es_ES
dc.description.references Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016). es_ES
dc.description.references Eigen, J. & Schroeder, M. Redox cycling stability of Fe2NiO4/YSZ composite storage materials for rechargeable oxide batteries. Energy Storage Mater. 28, 112–121 (2020). es_ES
dc.description.references Catalá-Civera, J. M. et al. Dynamic measurement of dielectric properties of materials at high temperature during microwave heating in a dual mode cylindrical cavity. IEEE Trans. Microw. Theory Tech. 63, 2905–2914 (2012). es_ES
dc.description.references García-Baños, B., Reinosa, J. J., Peñaranda-Foix, F. L., Fernández, J. F. & Catalá-Civera, J. M. Temperature assessment of microwave-enhanced heating processes. Sci. Rep. 9, 10809 (2019). es_ES
dc.description.references Campbell, C. T. & Peden, C. H. F. Oxygen vacancies and catalysis on ceria surfaces. Science 309, 713–714 (2005). es_ES
dc.description.references Naghavi, S. S. et al. Giant onsite electronic entropy enhances the performance of ceria for water splitting. Nat. Commun. 8, 1–6 (2017). es_ES
dc.description.references Chueh, W. C. et al. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Sci. 330, 1797–1801 (2010). es_ES
dc.description.references Bulfin, B. et al. Analytical model of CeO2 oxidation and reduction. J. Phys. Chem. C 117, 24129–24137 (2013). es_ES
dc.description.references Geller, A. et al. Operando tracking of electrochemical activity in solid oxide electrochemical cells by using near-infrared imaging. ChemElectroChem 2, 1527–1534 (2015). es_ES
dc.description.references Balaguer, M., Solís, C. & Serra, J. M. Structural-transport properties relationships on Ce1–xLnxO2–δ system (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and effect of cobalt addition. J. Phys. Chem. C 116, 7975–7982 (2012). es_ES
dc.description.references Holstein, T. Studies of polaron motion. Part II. The ‘small’ polaron. Ann. Phys. (N. Y). 8, 343–389 (1959). es_ES
dc.description.references Seki, K. & Tachiya, M. Electric field dependence of charge mobility in energetically disordered materials: polaron aspects. Phys. Rev. B 65, 1–13 (2002). es_ES
dc.description.references Emin, D. Generalized adiabatic polaron hopping: Meyer–Neldel compensation and Poole–Frenkel behavior. Phys. Rev. Lett. 100, 166602 (2008). es_ES
dc.description.references Bishop, S. R., Duncan, K. L. & Wachsman, E. D. Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide. Acta Mater. 57, 3596–3605 (2009). es_ES
dc.description.references Suzuki, T., Kosacki, I. & Anderson, H. U. Defect and mixed conductivity in nanocrystalline doped cerium oxide. J. Am. Ceram. Soc. 85, 1492–1498 (2002). es_ES
dc.description.references Zeng, L., Cheng, Z., Fan, J. A., Fan, L. S. & Gong, J. Metal oxide redox chemistry for chemical looping processes. Nat. Rev. Chem. 2, 349–364 (2018). es_ES
dc.description.references Liu, W., Song, M.-S., Kong, B. & Cui, Y. Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater. 29, 1603436 (2017). es_ES
dc.description.references Berger, C. M. et al. Development of storage materials for high-temperature rechargeable oxide batteries. J. Energy Storage 1, 54–64 (2015). es_ES
dc.description.references Posdziech, O., Schwarze, K. & Brabandt, J. Efficient hydrogen production for industry and electricity storage via high-temperature electrolysis. Int. J. Hydrog. Energy 44, 19089–19101 (2019). es_ES
dc.description.references Maric, R. & Yu, H. In Nanostructures in Energy Generation, Transmission and Storage (IntechOpen, 2018). es_ES
dc.description.references Dincer, I. & Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrog. Energy 40, 11094–11111 (2015). es_ES
dc.description.references Gielen, D. Hydrogen from Renewable Power Technology Outlook for the Energy Transition (2018). es_ES
dc.description.references Kuckshinrichs, W., Ketelaer, T. & Koj, J. C. Economic analysis of improved alkaline water electrolysis. Front. Energy Res. 5, 1 (2017). es_ES
dc.description.references Holladay, J. D., Hu, J., King, D. L. & Wang, Y. An overview of hydrogen production technologies. Catal. Today 139, 244–260 (2009). es_ES
dc.description.references Glenk, G. & Reichelstein, S. Economics of converting renewable power to hydrogen. Nat. Energy 4, 216–222 (2019). es_ES
dc.description.references Marxer, D., Furler, P., Takacs, M. & Steinfeld, A. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency. Energy Environ. Sci. 10, 1142–1149 (2017). es_ES
dc.description.references Vogt, C., Monai, M., Kramer, G. J. & Weckhuysen, B. M. The renaissance of the Sabatier reaction and its applications on Earth and in space. Nat. Catal. 2, 188–197 (2019). es_ES
dc.description.references Eckle, S., Anfang, H. G. & Behm, R. J. Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases. J. Phys. Chem. C 115, 1361–1367 (2011). es_ES
dc.description.references Wei, Y. et al. Three-dimensionally ordered macroporous Ce0.8Zr0.2O2-supported gold nanoparticles: synthesis with controllable size and super-catalytic performance for soot oxidation. Energy Environ. Sci. 4, 2959–2970 (2011). es_ES
dc.description.references Santos, V. P., Pereira, M. F. R., Órfão, J. J. M. & Figueiredo, J. L. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl. Catal. B 99, 353–363 (2010). es_ES
dc.description.references Hickman, D. A. & Schmidt, L. D. Production of syngas by direct catalytic oxidation of methane. Science 259, 343–346 (1993). es_ES
dc.description.references Feng, Z. A. et al. Fast vacancy-mediated oxygen ion incorporation across the ceria-gas electrochemical interface. Nat. Commun. 5, 1–9 (2014). es_ES
dc.description.references Flytzani-Stephanopoulos, M., Sakbodin, M. & Wang, Z. Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides. Science 312, 1508–1510 (2006). es_ES
dc.description.references Paunović, V. et al. Europium oxybromide catalysts for efficient bromine looping in natural gas valorization. Angew. Chem. Int. Ed. 56, 9791–9795 (2017). es_ES
dc.description.references Krupka, J. Contactless methods of conductivity and sheet resistance measurement for semiconductors, conductors and superconductors. Meas. Sci. Technol. 24, 62001 (2013). es_ES
dc.description.references Altschuler, H. M. Handbook of Microwave Measurements Vol. 2 (Polytechnic Institute Brooklyn Press, 1963). es_ES
dc.description.references Arai, M., Binner, J. G. P. & Cross, T. E. Comparison of techniques for measuring high-temperature microwave complex permittivity: measurements on an alumina/zircona system. J. Microw. Power Electromagn. Energy 31, 12–18 (1996). es_ES
dc.description.references López, R. & Gómez, R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J. Sol.-Gel Sci. Technol. 61, 1–7 (2012). es_ES
dc.description.references Murphy, A. B. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 91, 1326–1337 (2007). es_ES
dc.description.references Skorodumova, N. V. et al. Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles. Phys. Rev. B 64, 1151081–1151089 (2001). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem