- -

A deep embedded refined clustering approach for breast cancer distinction based on DNA methylation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A deep embedded refined clustering approach for breast cancer distinction based on DNA methylation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author del Amor, Rocío es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Monteagudo, Carlos es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2022-01-17T19:27:04Z
dc.date.available 2022-01-17T19:27:04Z
dc.date.issued 2021-07-31 es_ES
dc.identifier.issn 0941-0643 es_ES
dc.identifier.uri http://hdl.handle.net/10251/179754
dc.description.abstract [EN] Epigenetic alterations have an important role in the development of several types of cancer. Epigenetic studies generate a large amount of data, which makes it essential to develop novel models capable of dealing with large-scale data. In this work, we propose a deep embedded refined clustering method for breast cancer differentiation based on DNA methylation. In concrete, the deep learning system presented here uses the levels of CpG island methylation between 0 and 1. The proposed approach is composed of two main stages. The first stage consists in the dimensionality reduction of the methylation data based on an autoencoder. The second stage is a clustering algorithm based on the soft assignment of the latent space provided by the autoencoder. The whole method is optimized through a weighted loss function composed of two terms: reconstruction and classification terms. To the best of the authors¿ knowledge, no previous studies have focused on the dimensionality reduction algorithms linked to classification trained end-to-end for DNA methylation analysis. The proposed method achieves an unsupervised clustering accuracy of 0.9927 and an error rate (%) of 0.73 on 137 breast tissue samples. After a second test of the deep-learning-based method using a different methylation database, an accuracy of 0.9343 and an error rate (%) of 6.57 on 45 breast tissue samples are obtained. Based on these results, the proposed algorithm outperforms other state-of-the-art methods evaluated under the same conditions for breast cancer classification based on DNA methylation data. es_ES
dc.description.sponsorship This work has received funding from Horizon 2020, the European Union's Framework Programme for Research and Innovation, under grant Agreement No. 860627 (CLARIFY), the Spanish Ministry of Economy and Competitiveness through project PID2019105142RB-C21 (AI4SKIN) and SICAP (DPI2016-77869-C2-1-R) and GVA through Project PROMETEO/2019/109. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Neural Computing and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Deep embedded refined clustering es_ES
dc.subject Breast cancer es_ES
dc.subject DNA methylation es_ES
dc.subject Dimensionality reduction es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title A deep embedded refined clustering approach for breast cancer distinction based on DNA methylation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00521-021-06357-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//DPI2016-77869-C2-1-R//SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/860627/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Del Amor, R.; Colomer, A.; Monteagudo, C.; Naranjo Ornedo, V. (2021). A deep embedded refined clustering approach for breast cancer distinction based on DNA methylation. Neural Computing and Applications. 1-13. https://doi.org/10.1007/s00521-021-06357-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00521-021-06357-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\445157 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.description.references Akhavan-Niaki H, Samadani AA (2013) DNA methylation and cancer development: molecular mechanism. Cell Biochem Biophys 67(2):501–513 es_ES
dc.description.references Araújo AF, Antonino VO, Ponce-Guevara KL (2020) Self-organizing subspace clustering for high-dimensional and multi-view data. Neural Netw 130:253–268 es_ES
dc.description.references Bellman R (1957) Dynamic programming. Princeton Univ, Princeton es_ES
dc.description.references Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL et al (2011) High density DNA methylation array with single CPG site resolution. Genomics 98(4):288–295 es_ES
dc.description.references Cevikalp H (2019) High-dimensional data clustering by using local affine/convex hulls. Pattern Recognit Lett 128:427–432 es_ES
dc.description.references Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, Lin SM (2010) Comparison of beta-value and m-value methods for quantifying methylation levels by microarray analysis. BMC Bioinf 11(1):587 es_ES
dc.description.references Enguehard J, O’Halloran P, Gholipour A (2019) Semi-supervised learning with deep embedded clustering for image classification and segmentation. IEEE Access 7:11093–11104 es_ES
dc.description.references Esteller M (2008) Epigenetics in cancer. New Engl J Med 358(11):1148–1159 es_ES
dc.description.references Foster D (2019) Generative deep learning: teaching machines to paint, write, compose, and play. O’Reilly Media es_ES
dc.description.references GEO: Epigenome analysis of breast tissue from women with and without breast cancer. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse32393 es_ES
dc.description.references Guo X, Liu X, Zhu E, Yin J (2017) Deep clustering with convolutional autoencoders. In: International conference on neural information processing, pp. 373–382. Springer es_ES
dc.description.references Guo X, Zhu E, Liu X, Yin J (2018) Deep embedded clustering with data augmentation. In: Asian conference on machine learning, pp. 550–565 es_ES
dc.description.references Hershey JR, Chen Z, Le Roux J, Watanabe S (2016) Deep clustering: Discriminative embeddings for segmentation and separation. In: 2016 IEEE international conference on acoustics, apeech and signal processing (ICASSP), pp. 31–35. IEEE es_ES
dc.description.references Hofmeyr DP (2016) Clustering by minimum cut hyperplanes. IEEE Trans Pattern Anal Mach Intell 39(8):1547–1560 es_ES
dc.description.references Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218 es_ES
dc.description.references Jazayeri N, Sajedi H (2020) Breast cancer diagnosis based on genomic data and extreme learning machine. SN Appl Sci 2(1):3 es_ES
dc.description.references Khwaja M, Kalofonou M, Toumazou C (2018) A deep autoencoder system for differentiation of cancer types based on DNA methylation state. arXiv preprint arXiv:1810.01243 es_ES
dc.description.references Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nature Rev Genet 11(3):191–203 es_ES
dc.description.references Liu B, Liu Y, Pan X, Li M, Yang S, Li SC (2019) DNA methylation markers for pan-cancer prediction by deep learning. Genes 10(10):778 es_ES
dc.description.references Maaten LD, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(Nov):2579–2605 es_ES
dc.description.references Martorell-Marugán J, Tabik S, Benhammou Y, del Val C, Zwir I, Herrera F, Carmona-Sáez P (2019) Deep learning in omics data analysis and precision medicine. In: Computational Biology [Internet]. Codon Publications es_ES
dc.description.references Min E, Guo X, Liu Q, Zhang G, Cui J, Long J (2018) A survey of clustering with deep learning: from the perspective of network architecture. IEEE Access 6:39501–39514 es_ES
dc.description.references Prasetio B.H, Tamura H, Tanno K (2019) A deep time-delay embedded algorithm for unsupervised stress speech clustering. In: 2019 IEEE international conference on systems, man and cybernetics (SMC), pp. 1193–1198. IEEE es_ES
dc.description.references Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36 es_ES
dc.description.references Si Z, Yu H, Ma Z (2016) Learning deep features for DNA methylation data analysis. IEEE Access 4:2732–2737 es_ES
dc.description.references Strehl A, Ghosh J (2002) Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3(Dec):583–617 es_ES
dc.description.references Tasoulis S, Pavlidis NG, Roos T (2020) Nonlinear dimensionality reduction for clustering. Pattern Recognit 107:107508 es_ES
dc.description.references Tian T, Wan J, Song Q, Wei Z (2019) Clustering single-cell RNA-seq data with a model-based deep learning approach. Nat Mach Intell 1(4):191–198 es_ES
dc.description.references Titus AJ, Wilkins OM, Bobak CA, Christensen BC (2018) Unsupervised deep learning with variational autoencoders applied to breast tumor genome-wide DNA methylation data with biologic feature extraction. bioRxiv p. 433763 es_ES
dc.description.references Tsou JA, Hagen JA, Carpenter CL, Laird-Offringa IA (2002) DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene 21(35):5450–5461 es_ES
dc.description.references Venkat N (2018) The curse of dimensionality: Inside out es_ES
dc.description.references Xie J, Girshick R, Farhadi A (2018) Unsupervised deep embedding for clustering analysis. In: International conference on machine learning, pp. 478–487 x es_ES
dc.description.references Yuvaraj N, Vivekanandan P (2013) An efficient SVM based tumor classification with symmetry non-negative matrix factorization using gene expression data. In: 2013 International conference on information communication and embedded systems (Icices), pp. 761–768. IEEE es_ES
dc.description.references Zhang W, Spector TD, Deloukas P, Bell JT, Engelhardt BE (2015) Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements. Genome Biol 16(1):14 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem