- -

Rigid Versus Variable Energy Sources in Water-Pressurized Systems: An Economic and Environmental Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rigid Versus Variable Energy Sources in Water-Pressurized Systems: An Economic and Environmental Analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gomez Selles, Elena es_ES
dc.contributor.author Briones-Hidrovo, Andrei es_ES
dc.contributor.author Del Teso-March, Roberto es_ES
dc.contributor.author Uche Marcuello, Francisco Javier es_ES
dc.contributor.author Cabrera Marcet, Enrique es_ES
dc.date.accessioned 2022-01-24T19:29:46Z
dc.date.available 2022-01-24T19:29:46Z
dc.date.issued 2021-08 es_ES
dc.identifier.issn 0920-4741 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180140
dc.description.abstract [EN] The layouts of most urban water systems are known. A head tank with an appropriate elevation is used to supply water through the network at a pressure equal (or higher) to that set by the relevant standards. Furthermore, equalization, fire and emergency storage are important benefits of tank use, as is the possibility of avoiding peak rate electricity fares. However, at the end of the last century, some tanks were reported to have a negative impact the quality of water, and recommendations were made to limit their volume and revise their geometry. Recently, alternative options have been considered. Equalization can be achieved with pumps with variable-frequency drivers, emergency situations can be avoided with electric oil generators and solar plants can be used to offset other generation types and reduce energy costs. Therefore, this article analyses the performance of tanks as an energy source, and tank and pump supply methods are directly compared; overall, direct supply through pumps is cheaper, more energy efficient and more environmentally convenient. Therefore, in the context of climate change, it seems reasonable to avoid water tanks as energy sources. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Water Resources Management es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Water distribution systems es_ES
dc.subject Energy efficiency es_ES
dc.subject Water tank es_ES
dc.subject Life cycle cost es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.title Rigid Versus Variable Energy Sources in Water-Pressurized Systems: An Economic and Environmental Analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11269-021-02885-5 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Gomez Selles, E.; Briones-Hidrovo, A.; Del Teso-March, R.; Uche Marcuello, FJ.; Cabrera Marcet, E. (2021). Rigid Versus Variable Energy Sources in Water-Pressurized Systems: An Economic and Environmental Analysis. Water Resources Management. 35(10):3203-3220. https://doi.org/10.1007/s11269-021-02885-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11269-021-02885-5 es_ES
dc.description.upvformatpinicio 3203 es_ES
dc.description.upvformatpfin 3220 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\448269 es_ES
dc.description.references Batchabani E, Fuamba M (2014) Optimal Tank Design in Water Distribution Networks: Review of Literature and Perspectives. J Water Resour Plan Manag 140(2):136–145 es_ES
dc.description.references BOE (Boletín Oficial del Estado) (2020) Circular 3, 2020, de 15 de enero, de la Comisión Nacional de los Mercados y la Competencia, por la que se establece la metodología para el cálculo de los peajes de transporte y distribución de electricidad. BOE, 24 de enero de, 2020. Agencia Estatal Boletín Oficial del Estado, Madrid, pp 6953–6980 es_ES
dc.description.references Cabrera E, Pardo MA, Cabrera Jr. E, Cobacho R (2010) Agua y energía en España. Un reto complejo y fascinante. Ingeniería del Agua 17(3):235–245 es_ES
dc.description.references Cabrera E, Gómez E, Soriano J, del Teso R (2019) Eco-layouts in water distribution networks. J Water Resour Plann Manage 145(1):04018088. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001024 es_ES
dc.description.references Clark RM, Abdesaken F, Boulos PF, Mau RE (1996) Mixing in distribution system storage tanks: Its effect on water quality. J Environ Eng 122(9):814–821 es_ES
dc.description.references Dias AS, Kim H, Sivakumar PK et al (2013) Life cycle assessment: A comparison of manufacturing and remanufacturing processes of a diesel engine. Re-Engineering Manuf Sustain - Proc 20th CIRP Int Conf Life Cycle Eng 675–678 es_ES
dc.description.references EPA (Environmental Protection Agency) (2002) Finished Water Storage Facilities. US Environmental Protection Agency. Office of Ground Water and Drinking Water. Washington es_ES
dc.description.references Everhart GJ (2010) Comparison of life-cycle energy of water storage tanks. University of Florida es_ES
dc.description.references Gómez E, Cabrera E, Balaguer M, Soriano J (2015) Direct and indirect water supply: An energy assessment. Proc Eng 119:1088–1097. https://doi.org/10.1016/j.proeng.2015.08.941 es_ES
dc.description.references Grundfos (2019) Horizontal split case pumps. Booklet Data. Bjerringbro, Denmark es_ES
dc.description.references Jens N, Anders N (2014) Water supply in tall buildings: Roof tanks vs. pressurized systems. Grundfos Water Boosting. Grundfos. Denmark es_ES
dc.description.references Nee AYC (Editor) (2015) Handbook of Manufacturing Engineering and Technology, First. Springer London Heidelberg New York Dordrecht, Singapore es_ES
dc.description.references Petit-Boix A, Roigé N, de la Fuente A, Pujadas P, Gabarrell X, Rieradevall J, Josa A (2016) Integrated Structural Analysis and Life Cycle Assessment of Equivalent Trench-Pipe Systems for Sewerage. Water Resour Manage 2016(30):1117–1130. https://doi.org/10.1007/s11269-015-1214-5 es_ES
dc.description.references Pillot J, Catel J, Renaud E, Augeard B, Roux P (2016) Up to what point is loss reduction environmentally friendly?: The LCA of loss reduction scenarios in drinking water networks Water Research 104:231–241 es_ES
dc.description.references Raluy RG, Serra L, Uche J, Valero A (2005) Life Cycle Assessment of Water Production Technologies Part 2: Reverse Osmosis Desalination versus the Ebro River Water Transfer. Int J LCA 10(5):346–354 es_ES
dc.description.references Rossman LA, Uber JG, Grayman WM (1995) Modeling disinfectant residuals in drinking-water storage tanks. J Environ Eng 121(10):752 es_ES
dc.description.references Rossman LA (2000) Epanet2. Users Manual. US EPA, Cincinnati. USA es_ES
dc.description.references Stokes J, Horvath A (2006) Life Cycle Energy Assessment of Alternative Water Supply Systems (9 pp). The International Journal of Life Cycle Assessment 11:335–343 es_ES
dc.description.references SV (Sustainability Victoria) (2009) Energy Efficiency Best Practice Guide Pumping System. Sustainability Victoria. Melbourne. Australia es_ES
dc.description.references Tangsubkul N, Beavis P, Moore SJ, Lundie S, Waite TD (2005) Life Cycle Assessment of Water Recycling Technology. Water Resour Manage 19:521–537. https://doi.org/10.1007/s11269-005-5602-0 es_ES
dc.description.references Uche J, Martinez A, Castellano C, Subiela V (2013) Life cycle analysis of urban water cycle in two Spanish areas: inland city and island area. Desalination Water Treat 51(1):280–291. https://doi.org/10.1080/19443994.2012.716634 es_ES
dc.description.references Uche J, Martínez-Gracia A, Carmona U (2014) Life Cycle Assessment of the Supply and Use of Water in the Segura Basin Int J Life Cycle Assess 19:688–704. https://doi.org/10.1007/s11367-013-0677-y es_ES
dc.description.references Walski TM (2000) Hydraulic design of water distribution storage tanks. Water distribution systems handbook, 10, McGraw-Hill, New York, pp 10.1–10.20 es_ES
dc.description.references Walski TM (2012) Planning-level capital cost estimates for pumping. J Water Resources Planning and Management. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000167,307-310 es_ES
dc.description.references WC (Water Corporation) (2017) Design Standard No. DS 61. Water Supply Distribution - Tanks. October 2017. Water Corporation. Osborne Park. Australia es_ES
dc.description.references Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-ruiz E, Weidema B (2016) The ecoinvent database version 3 ( part I ): overview and methodology. Int J Life Cycle Assess 3:1218–1230. https://doi.org/10.1007/s11367-016-1087-8 es_ES
dc.description.references WHO (World Health Organization) (2017) Principles and practices of drinking-water chlorination: a guide to strengthening chlorination practices in small-to medium sized. World Health Organization. Regional Office for South East Asia. New Delhi, India es_ES
dc.subject.ods 14.- Conservar y utilizar de forma sostenible los océanos, mares y recursos marinos para lograr el desarrollo sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem