- -

Serverless Workflows for Containerised Applications in the Cloud Continuum

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Serverless Workflows for Containerised Applications in the Cloud Continuum

Mostrar el registro completo del ítem

Risco, S.; Moltó, G.; Naranjo-Delgado, DM.; Blanquer Espert, I. (2021). Serverless Workflows for Containerised Applications in the Cloud Continuum. Journal of Grid Computing. 19(3):1-18. https://doi.org/10.1007/s10723-021-09570-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/180321

Ficheros en el ítem

Metadatos del ítem

Título: Serverless Workflows for Containerised Applications in the Cloud Continuum
Autor: Risco, Sebastián Moltó, Germán Naranjo-Delgado, Diana María Blanquer Espert, Ignacio
Entidad UPV: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] This paper introduces an open-source platform to support serverless computing for scientific data-processing workflow-based applications across the Cloud continuum (i.e. simultaneously involving both on-premises and ...[+]
Palabras clave: Cloud computing , Serverless computing , Workflow , Containers
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Grid Computing. (issn: 1570-7873 )
DOI: 10.1007/s10723-021-09570-2
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10723-021-09570-2
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/101016577/EU/
info:eu-repo/grantAgreement/EDUC.INVEST.CULT.DEP//IDIFEDER%2F2018%2F032//PLATAFORMA DE COMPUTACION INTENSIVA MEDIANTE ACELERADORES GRAFICOS (GPUS) PARA SU APLICACION EN MEDICINA PERSONALIZADA/
Agradecimientos:
The authors would like to thank the European Union for the project "Artificial Intelligence in Secure PRIvacy-preserving computing coNTinuum" (AI-SPRINT), with code 101016577, funded under the H2020 Framework Programme and ...[+]
Tipo: Artículo

References

Agache, A., Brooker, M., Iordache, A., Liguori, A., Neugebauer, R., Piwonka, P., Popa, D.M.: Firecracker: lightweight virtualization for serverless applications. In: 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), pp. 419–434. USENIX Association, Santa Clara, CA. https://www.usenix.org/conference/nsdi20/presentation/agache (2020)

Al Nuaimi, E., Al Neyadi, H., Mohamed, N., Al-Jaroodi, J.: Applications of big data to smart cities. Journal of Internet Services and Applications 6(1), 25 (2015). https://doi.org/10.1186/s13174-015-0041-5.

de Alfonso, C., Caballer, M., Calatrava, A., Moltó, G., Blanquer, I.: Multi-elastic Datacenters: auto-scaled virtual clusters on energy-aware physical infrastructures. Journal of Grid Computing 17(1), 191–204 (2019). https://doi.org/10.1007/s10723-018-9449-z. [+]
Agache, A., Brooker, M., Iordache, A., Liguori, A., Neugebauer, R., Piwonka, P., Popa, D.M.: Firecracker: lightweight virtualization for serverless applications. In: 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), pp. 419–434. USENIX Association, Santa Clara, CA. https://www.usenix.org/conference/nsdi20/presentation/agache (2020)

Al Nuaimi, E., Al Neyadi, H., Mohamed, N., Al-Jaroodi, J.: Applications of big data to smart cities. Journal of Internet Services and Applications 6(1), 25 (2015). https://doi.org/10.1186/s13174-015-0041-5.

de Alfonso, C., Caballer, M., Calatrava, A., Moltó, G., Blanquer, I.: Multi-elastic Datacenters: auto-scaled virtual clusters on energy-aware physical infrastructures. Journal of Grid Computing 17(1), 191–204 (2019). https://doi.org/10.1007/s10723-018-9449-z.

Amazon Web Services: Amazon EC2. https://aws.amazon.com/ec2/

Amazon Web Services: AWS Batch — Easy and Efficient Batch Computing Capabilities. https://aws.amazon.com/batch/

Amazon Web Services: AWS Lambda. https://aws.amazon.com/lambda

Apache: OpenWhisk - Open Source Serverless Cloud Platform. https://openwhisk.apache.org/

Argo: Workflows & Pipelines. https://argoproj.github.io/projects/argo/

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah, R., Slominski, A., Suter, P.: Serverless computing: Current trends and open problems. In: Research Advances in Cloud Computing., pp 1–20. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5026-8_1

Baldini, I., Cheng, P., Fink, S.J., Mitchell, N., Muthusamy, V., Rabbah, R., Suter, P., Tardieu, O.: The serverless trilemma: function composition for serverless computing. In: Proceedings of the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software - Onward! 2017, pp 89–103. ACM Press, New York (2017). https://doi.org/10.1145/3133850.3133855. http://dl.acm.org/citation.cfm?doid=3133850.3133855

Balouek-Thomert, D., Renart, E.G., Zamani, A.R., Simonet, A., Parashar, M.: Towards a computing continuum: Enabling edge-to-cloud integration for data-driven workflows. International Journal of High Performance Computing Applications 33(6), 1159–1174 (2019). https://doi.org/10.1177/1094342019877383.

Baresi, L., Mendonça, D.F., Garriga, M., Guinea, S., Quattrocchi, G.: A unified model for the mobile-edge-cloud continuum. ACM Transactions on Internet Technology 19(2), 1–21 (2019). https://doi.org/10.1145/3226644

Beckman, P., Dongarra, J., Ferrier, N., Fox, G., Moore, T., Reed, D., Beck, M.: Harnessing the computing continuum for programming our world. In: Fog Computing., pp 215–230. Wiley (2020). https://doi.org/10.1002/9781119551713.ch7

Bello, J.P., Mydlarz, C., Salamon, J.: Sound analysis in smart cities. In: Computational Analysis of Sound Scenes and Events, pp 373–397. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-63450-0_13

Brewer, E.A.: Kubernetes and the path to cloud native. In: Proceedings of the Sixth ACM Symposium on Cloud Computing - SoCC ’15, pp 167–167. Association for Computing Machinery (ACM), New York (2015). https://doi.org/10.1145/2806777.2809955. http://dl.acm.org/citation.cfm?doid=2806777.2809955

Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.: Dynamic management of virtual infrastructures. Journal of Grid Computing 13(1), 53–70 (2015). https://doi.org/10.1007/s10723-014-9296-5

Calatrava, A., Romero, E., Moltó, G., Caballer, M., Alonso, J.M.: Self-managed cost-efficient virtual elastic clusters on hybrid Cloud infrastructures. Future Generation Computer Systems 61, 13–25 (2016). https://doi.org/10.1016/j.future.2016.01.018

Camero, A., Alba, E.: Smart City and information technology: A review. Cities 93, 84–94 (2019). https://doi.org/10.1016/j.cities.2019.04.014

Casalboni, A.: AWS Lambda Power Tuning. https://github.com/alexcasalboni/aws-lambda-power-tuning

Chard, R., Babuji, Y., Li, Z., Skluzacek, T., Woodard, A., Blaiszik, B., Foster, I., Chard, K.: funcX: a federated function serving fabric for science. In: Proceedings of the 29th International symposium on high-performance parallel and distributed computing, pp 65–76. ACM, New York (2020). https://doi.org/10.1145/3369583.3392683

Chen, C.H., Favre, J., Kurillo, G., Andriacchi, T.P., Bajcsy, R., Chellappa, R.: Camera networks for healthcare, teleimmersion, and surveillance. Computer 47(5), 26–36 (2014). https://doi.org/10.1109/MC.2014.112. http://ieeexplore.ieee.org/document/6818909/

Chen, Q., Wang, W., Wu, F., De, S., Wang, R., Zhang, B., Huang, X.: A survey on an emerging area: deep learning for smart city data. IEEE Trans. Emerg. Topics Comput. Intell. 3(5), 392–410 (2019). https://doi.org/10.1109/TETCI.2019.2907718. https://ieeexplore.ieee.org/document/8704334/

Christidis, A., Davies, R., Moschoyiannis, S.: Serving machine learning workloads in resource constrained environments: A serverless deployment example. In: Proceedings - 2019 IEEE 12th Conference on Service-Oriented Computing and Applications, SOCA 2019, pp. 55–63. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/SOCA.2019.00016 (2019)

Christidis, A., Moschoyiannis, S., Hsu, C. H., Davies, R.: Enabling Serverless Deployment of Large-Scale AI Workloads. IEEE Access 8, 70150–70161 (2020). https://doi.org/10.1109/ACCESS.2020.2985282

CNCF: Serverless Workflow: A specification for defining declarative workflow models that orchestrate Event-driven, Serverless applications. https://serverlessworkflow.io

Couturier, R.: Designing scientific applications on GPUs. Chapman and Hall/CRC. https://doi.org/10.1201/b16051. https://www.taylorfrancis.com/books/designing-scientific-applications-gpus-raphael-couturier/e/10.1201/b16051 (2013)

Docker: Enterprise Container Platform. https://www.docker.com/

Docker: Docker hub. https://hub.docker.com/ (2019)

Dutka, Ł., Wrzeszcz, M., Lichoń, T., Słota, R., Zemek, K., Trzepla, K., Opioła, Ł., Słota, R., Kitowski, J.: Onedata - A step forward towards globalization of data access for computing infrastructures, vol. 51, pp 2843–2847 (2015). https://doi.org/10.1016/j.procs.2015.05.445. https://www.sciencedirect.com/science/article/pii/S1877050915012533

Fouladi, S., Romero, F., Iter, D., Li, Q., Chatterjee, S., Kozyrakis, C., Zaharia, M., Winstein, K.: From laptop to Lambda: Outsourcing everyday jobs to thousands of transient functional containers. In: Proceedings of the 2019 USENIX Annual Technical Conference, USENIX ATC 2019, pp 475–488 (2019). https://dl.acm.org/doi/10.5555/3358807.3358848

Giménez-Alventosa, V., Moltó, G., Caballer, M.: A framework and a performance assessment for serverless MapReduce on AWS Lambda. Future Generation Computer Systems 97, 259–274 (2019). https://doi.org/10.1016/j.future.2019.02.057

Gimėnez-Alventosa, V., Moltȯ, G., Segrelles, J. D.: RUPER-LB: Load balancing embarrasingly parallel applications in unpredictable cloud environments. In: International Symposium on Cloud Computing and Services for High Performance Computing Systems (as part of the 18th International Conference on High Performance Computing & Simulation (HPCS 2020) (2020)

GRyCAP: minicon: minimization containers. https://github.com/grycap/minicon

Heath, M.T.: Scientific computing: : an introductory survey, revised second edition. Society for Industrial and Applied Mathematics, Philadelphia, PA. https://doi.org/10.1137/1.9781611975581. (2018)

Ishakian, V., Muthusamy, V., Slominski, A.: Serving deep learning models in a serverless platform. In: Proceedings - 2018 IEEE International Conference on Cloud Engineering, IC2E 2018, pp. 257–262. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/IC2E.2018.00052 (2018)

Ivie, P., Thain, D.: Reproducibility in scientific computing. https://doi.org/10.1145/3186266 (2018)

Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., Recht, B.: Occupy the cloud. In: Proceedings of the 2017 Symposium on Cloud Computing, pp 445–451. ACM, New York (2017). https://doi.org/10.1145/3127479.3128601. arXiv:1702.04024

Knative: Kubernetes-based platform to deploy and manage modern serverless workloads. https://knative.dev/

Linux Containers: LXC. https://linuxcontainers.org/lxc/introduction/

Malawski, M., Gajek, A., Zima, A., Balis, B., Figiela, K.: Serverless execution of scientific workflows: Experiments with HyperFlow, AWS Lambda and Google Cloud functions. Future Generation Computer Systems 110, 502–514 (2020). https://doi.org/10.1016/j.future.2017.10.029. https://linkinghub.elsevier.com/retrieve/pii/167739X1730047X

McCallister, E., Grance, T., Kent, K.: Guide to protecting the confidentiality of personally identifiable information (PII). Special Publication 800-122 Guide pp. 1–59. https://doi.org/10.5555/2206206 (2010)

Microsoft Azure: Azure Functions—Develop Faster With Serverless Compute. https://azure.microsoft.com/en-us/services/functions/

MinIO: High Performance, Kubernetes Native Object Storage. https://min.io/

Mirkhan, A.: BlurryFaces: A tool to blur faces or other regions in photos and videos. https://github.com/asmaamirkhan/BlurryFaces

Morris, K.: Infrastructure as code: managing servers in the cloud. O’Reilly Media, Inc. https://www.oreilly.com/library/view/infrastructure-as-code/9781491924334/ (2016)

OASIS: TOSCA simple profile in YAML version 1.3. https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html

OpenFaaS: Serverless functions made simple. https://www.openfaas.com/

OpenStack: Open Source Cloud Computing Infrastructure. https://www.openstack.org

Pavlovic, M., Etsion, Y., Ramirez, A.: On the memory system requirements of future scientific applications: Four case-studies. In: Proceedings - 2011 IEEE International Symposium on Workload Characterization, IISWC - 2011, pp 159–170 (2011). https://doi.org/10.1109/IISWC.2011.6114176

Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: Serverless computing for container-based architectures. Future Generation Computer Systems 83, 50–59 (2018). https://doi.org/10.1016/j.future.2018.01.022. http://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485

Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: Serverless computing for container-based architectures. Future Generation Computer Systems 83, 50–59 (2018). https://doi.org/10.1016/j.future.2018.01.022. http://www.sciencedirect.com/science/article/pii/S0167739X17316485

Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: A programming model and middleware for high throughput serverless computing applications. In: Proceedings of the 34th ACM/SIGAPP symposium on applied Computing - SAC ’19, pp 106–113. ACM Press, New York (2019). https://doi.org/10.1145/3297280.3297292

Perez, A., Risco, S., Naranjo, D.M., Caballer, M., Molto, G.: On-premises serverless computing for event-driven data processing applications. In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pp. 414–421. Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/cloud.2019.00073. https://ieeexplore.ieee.org/document/8814513 (2019)

Purohit, A.: face-mask-detector: Real-Time Face mask detection using deep learning with Alert system. https://github.com/adityap27/face-mask-detector/

Reisslein, M., Rinner, B., Roy-Chowdhury, A.: Smart Camera Networks [Guest editors’ introduction]. Computer 47(5), 23–25 (2014). https://doi.org/10.1109/MC.2014.134

Risco, S., Moltó, G.: GPU-enabled serverless workflows for efficient multimedia processing. Applied Sciences 11(4), 1438 (2021). https://doi.org/10.3390/app11041438. https://www.mdpi.com/2076-3417/11/4/1438

Ristov, S., Pedratscher, S., Fahringer, T.: AFCL: An abstract function choreography language for serverless workflow specification. Future Generation Computer Systems 114, 368–382 (2021). https://doi.org/10.1016/j.future.2020.08.012. https://linkinghub.elsevier.com/retrieve/pii/S0167739X20302648

Sengupta, S.: faas-flow: Function Composition for OpenFaaS. https://github.com/s8sg/faas-flow

Sewak, M., Singh, S.: Winning in the era of serverless computing and function as a service. In: 2018 3rd International Conference for Convergence in Technology, I2CT 2018. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/I2CT.2018.8529465 (2018)

Shields, M.: Control-versus data-driven workflows. In: Workflows for e-Science, pp 167–173. Springer , London (2007). https://link.springer.com/chapter/10.1007/978-1-84628-757-2_11

Spadini, T., Silva, D.L.d.O., Suyama, R.: Sound event recognition in a smart city surveillance context. arXiv:1910.12369 (2019)

Vecchiola, C., Pandey, S., Buyya, R.: High-performance cloud computing: A view of scientific applications. In: I-SPAN 2009 - The 10th International Symposium on Pervasive Systems, Algorithms, and Networks, pp 4–16 (2009). https://doi.org/10.1109/I-SPAN.2009.150

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem