- -

Chromo-fluorogenic probes for beta-galactosidase detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chromo-fluorogenic probes for beta-galactosidase detection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lozano-Torres, Beatriz es_ES
dc.contributor.author Blandez, Juan F. es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.date.accessioned 2022-01-28T07:41:07Z
dc.date.available 2022-01-28T07:41:07Z
dc.date.issued 2021-02-19 es_ES
dc.identifier.issn 1618-2642 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180327
dc.description.abstract [EN] beta-Galactosidase (beta-Gal) is a widely used enzyme as a reporter gene in the field of molecular biology which hydrolyzes the beta-galactosides into monosaccharides. beta-Gal is an essential enzyme in humans and its deficiency or its overexpression results in several rare diseases. Cellular senescence is probably one of the most relevant physiological disorders that involve beta-Gal enzyme. In this review, we assess the progress made to date in the design of molecular-based probes for the detection of beta-Gal both in vitro and in vivo. Most of the reported molecular probes for the detection of beta-Gal consist of a galactopyranoside residue attached to a signalling unit through glycosidic bonds. The beta-Gal-induced hydrolysis of the glycosidic bonds released the signalling unit with remarkable changes in color and/or emission. Additional examples based on other approaches are also described. The wide applicability of these probes for the rapid and in situ detection of de-regulation beta-Gal-related diseases has boosted the research in this fertile field es_ES
dc.description.sponsorship R.M laboratory members received the financial support from the Spanish Government (project RTI2018-100910-B-C41) and the Generalitat Valenciana (project PROMETEO 2018/024). B.L-T. received support from the Spanish Ministry of Economy for their PhD grants (FPU15/02707). J. F.-B received fellowship (CD19/00038) es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Analytical and Bioanalytical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chromo-fluorogenic probes es_ES
dc.subject Beta-Galactosidase detection es_ES
dc.subject Cellular senescence es_ES
dc.subject In vitro and in vivo detection es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Chromo-fluorogenic probes for beta-galactosidase detection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00216-020-03111-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Instituto de Salud Carlos III//"CD19%2F00038"//Contrato Sara Borrell/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECYD//FPU15%2F02707//NUEVOS MATERIALES HIBRIDOS PARA LA DETECCION DE MARCADORES BIOLOGICOS./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2018%2F024//SISTEMAS AVANZADOS DE LIBERACION CONTROLADA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Lozano-Torres, B.; Blandez, JF.; Sancenón Galarza, F.; Martínez-Máñez, R. (2021). Chromo-fluorogenic probes for beta-galactosidase detection. Analytical and Bioanalytical Chemistry. 413(9):2361-2388. https://doi.org/10.1007/s00216-020-03111-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00216-020-03111-8 es_ES
dc.description.upvformatpinicio 2361 es_ES
dc.description.upvformatpfin 2388 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 413 es_ES
dc.description.issue 9 es_ES
dc.identifier.pmid 33606064 es_ES
dc.relation.pasarela S\444299 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder MINISTERIO DE EDUCACION es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Fernandes P. Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res. 2010;2010:86253–73. es_ES
dc.description.references Likidlilid A, Patchanans N, Peerapatdit T, Sriratanasathavorn C. Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. J Med Assoc Thail. 2010;93(6):682–93. es_ES
dc.description.references Pinto N, Dolan ME. Clinically relevant genetic variations in drug metabolizing enzymes. Curr Drug Metab. 2011;12(5):487–97. es_ES
dc.description.references Giannini EG, Testa R, Savarinom V. Liver enzyme alteration: a guide for clinicians. CMAJ. 2005;172(3):367–79. es_ES
dc.description.references Peters C, Shapiro EG, Krivit W. Hurler syndrome: past, present, and future. J Pediatr. 1998;133(1):7–9. es_ES
dc.description.references Rodriguez M, O'Brien JS, Garrett RS, Powell HC. Canine GM1 gangliosidosis: an ultrastructural and biochemical study. J Neuropathol Exp Neurol. 1982;41(6):618–29. es_ES
dc.description.references Cozma C, Eichler S, Wittmann G, Flores Bonet A, Kramp G, Giese AK, et al. Diagnosis of Morquio syndrome in dried blood spots based on a new MRM-MS assay. PLoS One. 2015;10(7):e0131228. es_ES
dc.description.references Suzuki K, Suzuki Y. Globoid cell leucodystrophy (Krabbe's disease): deficiency of galactocerebroside beta-galactosidase. Proc Natl Acad Sci U S A. 1970;66(2):302–9. es_ES
dc.description.references Holtzman D, Ulrich J. Senescent glia spell trouble in Alzheimer’s disease. Nat Neurosci. 2019;22(5):683–4. es_ES
dc.description.references Robert L, Fulop T. Aging: facts and theories. Indian J Med Res. 2016;143(3):385–6. es_ES
dc.description.references Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363–7. es_ES
dc.description.references Biran A, Zada L, Karam PA, Vadai E, Roitman L, et al. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16(4):661–71. es_ES
dc.description.references Grynkiewicz G, Poenie M, Tsien RY, Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly fluorescence properties. J Biol Chem. 1985;260(6):3440–50. es_ES
dc.description.references de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJ, McCoy CP, Rademacher JT, et al. Signaling recognition events with fluorescent sensors and switches. Chem Rev. 1997;97(5):1515–66. es_ES
dc.description.references Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev. 2008;108(5):1517–49. es_ES
dc.description.references Ueno T, Nagano T. Fluorescent probes for sensing and imaging. Nat Methods. 2011;8(8):642–5. es_ES
dc.description.references Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010;110(5):2620–40. es_ES
dc.description.references Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev. 2000;205(1):3–40. es_ES
dc.description.references Kim HM, Cho BR. Small-molecule two-photon probes for bioimaging applications. Chem Rev. 2015;115(11):5014–55. es_ES
dc.description.references Huang J, Pu K. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew Chem Int Ed. 2020;59(29):11717–31. es_ES
dc.description.references Miao Q, Pu K. Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv Mater. 2018;30(49):e1801778. es_ES
dc.description.references Cheng P, Miao Q, Li J, Huang J, Xie C, Pu K. Unimolecular chemo-fluoro-luminescent reporter for crosstalk-free duplex imaging of hepatotoxicity. J Am Chem Soc. 2019;141(27):10581–4. es_ES
dc.description.references Wei H, Wu G, Tian X, Liu Z. Smart fluorescent probes for in situ imaging of enzyme activity: design strategies and applications. Future Med Chem. 2018;10(23):2729–44. es_ES
dc.description.references Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang XB, et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev. 2018;47(18):7140–80. es_ES
dc.description.references Huang J, Li J, Lyu Y, Miao Q, Pu K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat Mater. 2019;18:1133–43. es_ES
dc.description.references Roth ME, Green O, Gnaim S, Shabat D. Dendritic, oligomeric, and polymeric self-immolative molecular amplification. Chem Rev. 2016;116(3):1309–52. es_ES
dc.description.references Zhang J, Cheng P, Pu K. Recent advances of molecular optical probes in imaging of β-galactosidase. Bioconjug Chem. 2019;30(8):2089–101. es_ES
dc.description.references Rotman B. Measurement of activity of single molecules of β-D-galactosidase. Proc Natl Acad Sci U S A. 1961;47(12):1981–91. es_ES
dc.description.references Rotman B, Zderic JA, Edelstein M. Fluorogenic substrates for beta-D-galactosidases and phosphatases derived from flurescein (3,6-dihydroxyfluoran) and its monomethylether. Proc Natl Acad Sci U S A. 1963;50(1):1–6. es_ES
dc.description.references Mandal PK, Cattiaux L, Bensimon D, Mallet JM. Monogalactopyranosides of fluorescein and fluorescein methyl ester: synthesis, enzymatic hydrolysis by biotnylated β-galactosidase, and determination of translational diffusion coefficient. Carbohydr Res. 2012;358(40):40–6. es_ES
dc.description.references Stracean R, Wooda J, Irschmann R. Synthesis and properties of 4-Methyl-2-oxo-1,2-benzopyran-7-yl β-D-galactoside (galactoside of 4-methylumbelliferone). J Org Chem. 1962;27(3):1074–5. es_ES
dc.description.references Gee KR, Sun WC, Bhalgat KM, Upson RH, Klaubert DH, Latham KA, et al. Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and beta-galactosidases. Anal Biochem. 1999;273(1):41–8. es_ES
dc.description.references Chilvers KF, Perry JD, James AL, Reed RH. Synthesis and evaluation of novel fluorogenic substrates for the detection of bacterial beta-galactosidase. J Appl Microbiol. 2001;91(6):1118–30. es_ES
dc.description.references Aizawa K. Studien über Carbohydrasen, I. I. Die fermentative Hydrolyse des p-nitrophenol-β-galactoside. Enzymologia. 1939;6:321–4. es_ES
dc.description.references Na SY, Kim HJ. Fused oxazolidine-based dual optical probe for galactosidase with a dramatic chromogenic and fluorescence turn-on effect. Dyes Pigments. 2016;134:526–30. es_ES
dc.description.references Corey PE, Trimmer RW, Biddlecom WG. A new chromogenic β-Galactosidase substrate: 7-β-D-galactopyranosyloxy-9,9-dimethyl-9H-acridin-2-one. Angew Chem Int Ed. 1991;30(12):1646–8. es_ES
dc.description.references Wang P, Du J, Liu H, Bi G, Zhang G. Small quinolinium-based enzymatic probes via blue-to-red ratiometric fluorescence. Analyst. 2016;141:1483–7. es_ES
dc.description.references Otsubo T, Minami A, Fujii H, Taguchi R, Takahashi T, Suzuki T, et al. 2-(Benzothiazol-2-yl)-phenyl-β-d-galactopyranoside derivatives as fluorescent pigment dyeing substrates and their application for the assay of β-d-galactosidase activities. Bioorg Med Chem Lett. 2013;23(7):2245–9. es_ES
dc.description.references Sun C, Zhang X, Tanga M, Liu L, Shi L, Gao C, et al. New optical method for the determination of β-galactosidase and α-fetoprotein based on oxidase-like activity of fluorescein. Talanta. 194:164–70. es_ES
dc.description.references Hirabayashi K, Hanaoka K, Takayanagi T, Toki Y, Egawa T, Kamiya M, et al. Analysis of chemical equilibrium of silicon-substituted fluorescein and its application to develop a scaffold for red fluorescent probes. Anal Chem. 2015;87(17):9061–9. es_ES
dc.description.references Horwitz JP, Chua J, Curby RJ, Tomson AJ, Da Rooge MA, Fisher BE, et al. Substrates for cytochemical demonstration of enzyme activity. i. some substituted 3-Indolyl-β-D-glycopyranosides. Med Chem. 1964;7(4):574–5. es_ES
dc.description.references Ho NH, Weissleder R, Tung CH. A self-immolative reporter for beta-galactosidase sensing. ChemBioChem. 2007;8(5):560–6. es_ES
dc.description.references Huang Y, Feng H, Liu W, Zhang S, Tang C, Chen J, et al. Cation-driven luminescent self-assembled dots of copper nanoclusters with aggregation-induced emission for β-galactosidase activity monitoring. J Mater Chem B. 2017;5(26):5120–7. es_ES
dc.description.references Xie X, Liana Y, Xiao L, Weia L. Facile and label-free fluorescence sensing of β-galactosidase activity by graphene quantum dots. Spectrochim Acta A Mol Biomol Spectrosc. 2020;240:118594. es_ES
dc.description.references Hu Q, Ma K, Mei Y, He M, Kong J, Zhang X. Metal-to-ligand charge-transfer: applications to visual detection of β-galactosidase activity and sandwich immunoassay. Talanta. 2017;167:253–9. es_ES
dc.description.references Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T. Evolution of fluorescein as a platform for finely tunable fluorescence probes. J Am Chem Soc. 2005;127(13):4888–94. es_ES
dc.description.references Komatsu T, Kikuchi K, Takakusa H, Hanaoka K, Ueno T, Kamiya M, et al. Design and synthesis of an enzyme activity-based labeling molecule with fluorescence spectral change. J Am Chem Soc. 2006;128(50):15946–7. es_ES
dc.description.references Koide Y, Urano Y, Yatsushige A, Hanaoka K, Terai T, Nagano T. Design and development of enzymatically activatable photosensitizer based on unique characteristics of thiazole orange. J Am Chem Soc. 2009;131(17):6058–9. es_ES
dc.description.references Egawa T, Koide Y, Hanaoka K, Komatsu T, Teraiab T, Nagano T. Development of a fluorescein analogue, TokyoMagenta, as a novel scaffold for fluorescence probes in red region. Chem Commun. 2011;47(14):4162–4. es_ES
dc.description.references Kamiya M, Asanuma D, Kuranaga E, Takeishi A, Sakabe M, Miura M, et al. β-Galactosidase fluorescence probe with improved cellular accumulation based on a spirocyclized rhodol scaffold. J Am Chem Soc. 2011;133(33):12960–3. es_ES
dc.description.references Han J, Han MS, Tung CH. A fluorogenic probe for β-galactosidase activity imaging in living cells. Mol BioSyst. 2013;9(12):3001–8. es_ES
dc.description.references Peng L, Gao M, Cai X, Zhang R, Li K, Feng G, et al. A fluorescent light-up probe based on AIE and ESIPT processes for β-galactosidase activity detection and visualization in living cells. J Mater Chem B. 2015;3(47):9168–72. es_ES
dc.description.references Tseng JC, Kung AL. In vivo imaging of endogenous enzyme activities using luminescent 1,2-dioxetane compounds. J Biomed Sci. 2015;22(1):45. es_ES
dc.description.references Grimm JB, Gruber TD, Ortiz G, Brown TA, Lavis LD. Virginia Orange: a versatile, red-shifted fluorescein scaffold for single- and dual-input fluorogenic probes. Bioconjug Chem. 2016;27(2):474–80. es_ES
dc.description.references Wei X, Hu XX, Zhang LL, Li J, Wang J. et al. Highly selective and sensitive FRET based ratiometric two-photon fluorescent probe for endogenous β-galactosidase detection in living cells and tissues Microchem. J. 2020;157:105046. es_ES
dc.description.references Calatrava-Pérez E, Bright SA, Achermann S, Moylan C, Senge MO, Veale EB, et al. Glycosidase activated release of fluorescent 1,8-naphthalimide probes for tumor cell imaging from glycosylated pro-probes. Chem Commun. 2016;52(89):13086–9. es_ES
dc.description.references Jiang G, Zeng G, Zhu W, Li Y, Dong X, Zhang G, et al. A selective and light-up fluorescent probe for β-galactosidase activity detection and imaging in living cells based on an AIE tetraphenylethylene derivative. Chem Commun. 2017;53(32):4505–8. es_ES
dc.description.references Yang W, Zhao X, Zhang Y, Zhou Y, Fan S, Sheng H, et al. Hydroxyphenylquinazolinone-based turn-on fluorescent probe for β-galactosidase activity detection and application in living cells. Dyes Pigments. 2018;156:100–7. es_ES
dc.description.references Li Y, Ning L, Yuan F, Zhang F, Zhang J, Xu Z, et al. Activatable formation of emissive excimers for highly selective detection of β-galactosidase. Anal Chem. 2020;92(8):5733–40. es_ES
dc.description.references Huang J, Li N, Wang Q, Gu Y, Wang P. A lysosome-targetable and two-photon fluorescent probe for imaging endogenous β-galactosidase in living ovarian cancer cells. Sensor Actuat B-Chem. 2017;246:833–9. es_ES
dc.description.references Chen X, Zhang X, Ma X, Zhang Y, Gao G, Liu J, et al. Novel fluorescent probe for rapid and ratiometric detection of β-galactosidase and live cell imaging. Talanta. 2019;192:308–13. es_ES
dc.description.references Fu W, Yan C, Zhang Y, Ma Y, Guo Z, Zhu WH. Near-infrared aggregation-induced emission-active probe enables in situ and long-term tracking of endogenous β-galactosidase activity. Front Chem. 2019;7:291–302. es_ES
dc.description.references Zhang X, Chen X, Zhang Y, Liu K, Shen H, et al. A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase. Anal Bioanal Chem. 2019;411:7957–66. es_ES
dc.description.references Chen M, Mu L, Cao X, She G, Shi W. A novel ratiometric fluorescent probe for highly sensitive and selective detection of β-galactosidase in living cells. Chin J Chem. 2019;37(4):330–6. es_ES
dc.description.references Kong X, Li M, Dong B, Yin Y, Song W, Lin W. An ultrasensitivity fluorescent probe based on the ict-fret dual mechanisms for imaging β-galactosidase in vitro and ex vivo. Anal Chem. 2019;91(24):15591–8. es_ES
dc.description.references Lee HW, Lim CS, Choi H, Cho MK, Noh CH, Lee K, et al. Discrimination between human colorectal neoplasms with a dual-recognitive two-photon probe. Anal Chem. 2019;91(22):14705–11. es_ES
dc.description.references Zhao X, Yang W, Fan S, Zhou Y, Sheng H, Cao Y, et al. A hemicyanine-based colorimetric turn-on fluorescent probe for β-galactosidase activity detection and application in living cells. J Lumin. 2019;205:310–7. es_ES
dc.description.references Li X, Pan Y, Chen H, Duan Y, Zhou S, Wu W, et al. Specific near-infrared probe for ultrafast imaging of lysosomal β-galactosidase in ovarian cancer cells. Anal Chem. 2020;92(8):5772–9. es_ES
dc.description.references Long R, Tang C, Yang Z, Fu Q, Xu J, Tong C, et al. A natural hyperoside based novel light-up fluorescent probe with AIE and ESIPT characteristics for on-site and long-term imaging of β-galactosidase in living cells. J Mater Chem C. 2020;8(34):11860–5. es_ES
dc.description.references Tang C, Zhou J, Qian Z, Ma Y, Huang Y, Feng H. A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: β-galactosidase activity detection in vitro and in living cells. J Mater Chem B. 2017;5(10):1971–9. es_ES
dc.description.references Wang W, Vellaisamy K, Li W, Wu C, Ko CN, Leung CL, et al. Development of a long-lived luminescence probe for visualizing β-galactosidase in ovarian carcinoma cells. Anal Chem. 2017;89(21):11679–84. es_ES
dc.description.references James AL, Perry JD, Ford M, Armstrong L, Gould FK. Evaluation of cyclohexenoesculetin-beta-D-galactoside and 8-hydroxyquinoline-beta-D-galactoside as substrates for the detection of beta-galactosidase. Appl Environ Microbiol. 1996;62(10):3868–70. es_ES
dc.description.references James AL, Perry JD, Chilvers K, Robson IS, Armstrong L, Orr KE. Alizarin-beta-D-galactoside: a new substrate for the detection of bacterial beta-galactosidase. Lett Appl Microbiol. 2000;30(4):336–40. es_ES
dc.description.references Wei X, Wu Q, Zhang J, Zhang Y, Guo W, Chen M, et al. Synthesis of precipitating chromogenic/fluorogenic β-glucosidase/β-galactosidase substrates by a new method and their application in the visual detection of foodborne pathogenic bacteria. Chem Commun. 2017;53(1):103–6. es_ES
dc.description.references Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482–96. es_ES
dc.description.references Filho MS, Dao P, Gesson M, Martin AR, Benhida R. Development of highly sensitive fluorescent probes for the detection of β-galactosidase activity- application to the real-time monitoring of senescence in live cells. Analyst. 2018;143(11):2680–8. es_ES
dc.description.references Kim EJ, Podder A, Maiti M, Lee JM, Chung BG, Bhuniya S. Selective monitoring of vascular cell senescence via β-Galactosidase detection with a fluorescent chemosensor. Sensor Actuat B-Chem. 2018;274:194–200. es_ES
dc.description.references Jiang J, Tan Q, Zhao S, Song H, Hua L, Xie H. Late-stage difluoromethylation leading to a self-immobilizing fluorogenic probe for the visualization of enzyme activities in live cells. Chem Commun. 2019;55(99):15000–3. es_ES
dc.description.references Qiu W, Li X, Shi D, Li X, Gao Y, Li J, et al. A rapid-response near-infrared fluorescent probe with large Stokes shift for senescence-associated β-galactosidase activity detection and imaging of senescent cells. Dyes Pigments. 2020;182(99):108657. es_ES
dc.description.references Makau JN, Kitagawa A, Kitamura K, Yamaguchi T, Mizuta S. Design and development of an HBT-based ratiometric fluorescent probe to monitor stress-induced premature senescence. ACS Omega. 2020;5:11299–307. es_ES
dc.description.references Senter PD, Saulnier MG, Schreiber GJ, Hirschberg DL, Brown JP, Hellström I, et al. Antitumor effect of antibody-alkaline phosphatase conjugates in combination with etoposide phosphate. Proc Natl Acad Sci U S A. 1988;85(13):4842–6. es_ES
dc.description.references Senter PD, Springer CJ. Selective activation of anticancer prodrugs by monoclonal antibody-enzyme conjugates. Adv Drug Deliv Rev. 2001;53(3):247–64. es_ES
dc.description.references Gu K, Xu Y, Li H, Guo Z, Zhu S, Shi P, et al. Real-time tracking and in vivo visualization of β-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. J Am Chem Soc. 2016;138(16):5334–40. es_ES
dc.description.references Tung CH, Zeng Q, Shah K, Kim DE, Schellingerhout D, Weissleder R. In vivo imaging of beta-galactosidase activity using far red fluorescent switch. Cancer Res. 2004;64(5):1579–83. es_ES
dc.description.references Wehrman TS, von Degenfeld G, Krutzik PO, Nolan GP, Blau HM. Luminescent imaging of beta-galactosidase activity in living subjects using sequential reporter-enzyme luminescence. Nat Methods. 2006;3(4):295–301. es_ES
dc.description.references Oushiki D, Kojima H, Takahashi Y, Komatsu T, Terai T, Hanaoka K, et al. Near-infrared fluorescence probes for enzymes based on binding affinity modulation of squarylium dye scaffold. Anal Chem. 2012;84(10):4404–10. es_ES
dc.description.references Zhang XX, Wu H, Li P, Qu ZJ, Tan MQ, Han KL. A versatile two-photon fluorescent probe for ratiometric imaging E. coliβ-galactosidase in live cells and in vivo. Chem Commun. 2016;52(53):8283–6. es_ES
dc.description.references Kim EJ, Kumar R, Sharma A, Yoon B, Kim HM, Lee H, et al. In vivo imaging of β-galactosidase stimulated activity in hepatocellular carcinoma using ligand-targeted fluorescent probe. Biomaterials. 2017;122:83–90. es_ES
dc.description.references Shi L, Yan C, Ma Y, Wang T, Guo Z, Zhu WH. In vivo ratiometric tracking of endogenous β-galactosidase activity using an activatable near-infrared fluorescent probe. Chem Commun. 2019;55(82):12308–11. es_ES
dc.description.references Zhen X, Zhang J, Huang J, Xie C, Miao Q, Pu K. Macrotheranostic probe with disease-activated near-infrared fluorescence, photoacoustic, and photothermal signals for imaging-guided therapy. Angew Chem Int Ed. 2018;57(26):7804–8. es_ES
dc.description.references Li Z, Ren M, Wang L, Dai L, Lin W. Development of a red-emissive two-photon fluorescent probe for sensitive detection of beta-galactosidase in vitro and in vivo. Sensor Actuat B-Chem. 2020;307:127643. es_ES
dc.description.references González-Gualda E, Pàez-Ribes M, Lozano-Torres B, Macias D, Wilson JR 3rd, González-López C, et al. Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell. 2020;19(4):e13142. es_ES
dc.description.references Lozano-Torres B, Galiana I, Rovira M, Garrido E, Chaib S, Bernardos A, et al. An OFF–ON two-photon fluorescent probe for tracking cell senescence in vivo. J Am Chem Soc. 2017;139(26):8808–11. es_ES
dc.description.references Lozano-Torres B, Blandez JF, Galiana I, García-Fernández A, Alfonso M, Marcos MD, et al. Real-time in vivo detection of cellular senescence through the controlled release of the NIR fluorescent dye Nile blue. Angew Chem Int Ed. 2020;59(35):5152–6. es_ES
dc.description.references Wang Y, Liu J, Ma X, Cui C, Deenik PR, Henderson KP, et al. Real-time imaging of senescence in tumors with DNA damage. Sci Rep. 2019;9:2102. es_ES
dc.description.references Chen JA, Guo W, Wang Z, Sun N, Pan H, Tan J, et al. In vivo imaging of senescent vascular cells in atherosclerotic mice using a β-galactosidase-activatable nanoprobe. Anal Chem. 2020;92(18):12613–21. es_ES
dc.description.references Liu J, Ma X, Cui C, Wang Y, Deenik PR, Cui L. A self-immobilizing NIR probe for non-invasive imaging of senescence. bioRxiv. 2020. https://doi.org/10.1101/2020.03.27.010827. es_ES
dc.description.references Aznar E, Oroval M, Pascual L, Murguía JR, Martínez-Máñez R, Sancenón F. Gated materials for on-command release of guest molecules. Chem Rev. 2016;116(2):561–718. es_ES
dc.description.references García-Fernández A, Aznar E, Martínez-Máñez R, Sancenón F. New advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers. Small. 2020;16(3):1902242–304. es_ES
dc.description.references Coll C, Bernardos A, Martínez-Máñez R, Sancenón F. Gated silica mesoporous supports for controlled release and signaling applications. Acc Chem Res. 2013;46(2):339–49. es_ES
dc.description.references Muñoz-Espín D, Rovira M, Galiana I, Giménez C, Lozano-Torres B, Paez-Ribes M. A versatile drug delivery system targeting senescent cells. EMBO Mol Med. 2018;10(9):e9355. es_ES
dc.description.references Lozano-Torres B, Estepa-Fernández A, Rovira M, Orzáez M, Serrano M, Martínez-Máñez R, et al. The chemistry of senescence. Nat Rev Chem. 2019;3:426–41. es_ES
dc.description.references Mazur A, Kro’l JE, Marczak M, Skorupska A. Membrane topology of PssT, the transmembrane protein component of the type I exopolysaccharide transport system in rhizobium leguminosarum bv trifolii strain TA1. J Bacteriol. 2003;85(8):2503–11. es_ES
dc.description.references Agostini A, Mondragón L, Bernardos A, Martínez-Máñez R, Marcos MD, Sancenón F, et al. Targeted cargo delivery in senescent cells using capped mesoporous silica nanoparticles. Angew Chem Int Ed. 2012;51(42):10556–60. es_ES
dc.description.references Asanuma D, Sakabe M, Kamiya M, Yamamoto K, Hiratake J, Ogawa M, et al. Sensitive β-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo. Nat Commun. 2015;6:6463. es_ES
dc.description.references Sakabe M, Asanuma D, Kamiya M, Iwatate RI, Hanaoka K, Terai T, et al. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. J Am Chem Soc. 2013;135(1):409–14. es_ES
dc.description.references Doura T, Kamiya M, Obata F, Yamaguchi Y, Hiyama TY, Matsuda T, et al. Detection of LacZ-positive cells in living tissue with single-cell resolution. Angew Chem Int Ed. 2016;55(33):9620–4. es_ES
dc.description.references Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009;361:2353–65. es_ES
dc.description.references Chatterjee SK, Bhattacharya M, Barlow JJ. Glycosyltransferase and glycosidase activities in ovarian cancer patients. Cancer Res. 1979;39:1943–51. es_ES
dc.description.references Wu C, Ni Z, Li P, Li Y, Pang X, Xie R, et al. A near-infrared fluorescent probe for monitoring and imaging of β-galactosidase in living cells. Talanta. 2020;219:121307. es_ES
dc.description.references Pang X, Li Y, Zhou Z, Lu Q, Xie R, Wu C, et al. Visualization of endogenous β-galactosidase activity in living cells and zebrafish with a turn-on near-infrared fluorescent probe. Talanta. 2020;217:121098. es_ES
dc.description.references Lee HW, Heo CH, Sen D, Byun HO, Kwak IH, Yoon G, et al. Ratiometric two-photon fluorescent probe for quantitative detection of β-galactosidase activity in senescent cells. Anal Chem. 2014;86(20):10001–5. es_ES
dc.description.references Zhang J, Li C, Dutta C, Fang M, Zhang S, Tiwari A, et al. A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells. Anal Chim Acta. 2017;968:97–104. es_ES
dc.description.references Kamiya M, Kobayashi H, Hama Y, Koyama Y, Bernardo M, Nagano T, et al. An enzymatically activated fluorescence probe for targeted tumor imaging. J Am Chem Soc. 2007;129(13):3918–29. es_ES
dc.description.references Gnaim S, Green O, Shabat D. The emergence of aqueous chemiluminescence: new promising class of phenoxy 1,2-dioxetane luminophores. Chem Commun. 2018;54(17):2073–85. es_ES
dc.description.references Galiana I, Lozano-Torres B, Sancho M, Alfonso M, Bernardos A, Bisbal V, et al. Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic. J Control Release. 2020;323:624–34. es_ES
dc.description.references Eilon-Shaffer T, Roth-Konforti M, Eldar-Boock A, Satchi-Fainarob R, Shabat D. ortho-Chlorination of phenoxy 1,2-dioxetane yields superior chemiluminescent probes for in vitro and in vivo imaging. Org. Biomol Chem. 2018;16(10):1708–12. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem