- -

Flammability analysis of military fabrics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Flammability analysis of military fabrics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yahaya, R. es_ES
dc.contributor.author Zahari, N. es_ES
dc.contributor.author Wan Adnan, W.A.W. es_ES
dc.date.accessioned 2022-02-03T10:49:14Z
dc.date.available 2022-02-03T10:49:14Z
dc.date.issued 2022-01-31
dc.identifier.uri http://hdl.handle.net/10251/180463
dc.description.abstract [EN] There are many types of fabric materials used in military applications. From clothing to protective equipment, fabric analysis mostly focused on its physical properties. Still, its flammability has not been well studied, such as ease of ignition, heat release, and toxicity. This paper reports the flammability properties of fabric in military applications. The ignition time, heat release, and smoke production of six commercially available military fabrics are discussed in this article. The fabrics analysed are cotton, polyester-cotton, coated nylon, and kenaf fabric. The fabric grouping into the coated and printed fabric while cotton and kenaf were tested as a comparison. Results indicated that coated fabric (N420D and N1000D) showed higher TTI compared to printed fabric (P35C65, P35C65M, and P65C35). It is affected by heat flux, the areal density of the sample, sample mass, and the number of sample layers. Coated fabrics (N420D and N1000D) indicate higher EHC compared with other fabrics. For printed fabric, a relatively lower EHC was observed as it indicates incomplete combustion. Total heat release of the samples tested was presented as an integration of the HRR vs time curve. Coated samples show the highest values for PHRR and THR values compared to printed and cotton fabrics. es_ES
dc.description.sponsorship We thank officers who conducted the cone calorimeter tests at the Flammability Lab, Protection and Biophysical Technology Division, STRIDE, Ministry of Defence, Malaysia. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Journal of Applied Research in Technology & Engineering es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Flammability es_ES
dc.subject Cone calorimeter es_ES
dc.subject Smoke density es_ES
dc.subject Heat release rate es_ES
dc.title Flammability analysis of military fabrics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/jarte.2022.16710
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Yahaya, R.; Zahari, N.; Wan Adnan, W. (2022). Flammability analysis of military fabrics. Journal of Applied Research in Technology & Engineering. 3(1):9-17. https://doi.org/10.4995/jarte.2022.16710 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/jarte.2022.16710 es_ES
dc.description.upvformatpinicio 9 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2695-8821
dc.relation.pasarela OJS\16710 es_ES
dc.description.references Alongi, J., Tata, J., Carosio, F., Rosace, G., Frache, A., & Camino, G. (2015). A Comparative Analysis of Nanoparticle Adsorption as Fire-Protection Approach for Fabrics. Polymers, 7(1), 47-68. https://doi.org/10.3390/polym7010047 es_ES
dc.description.references Babrauskas, V., & Peacock, R. D. (1992). Heat Release Rate: The Single Most Important Variable in Fire Hazard. Fire Safety Journal, 18, 255-272. https://doi.org/10.1016/0379-7112(92)90019-9 es_ES
dc.description.references Bei, P., Liwei, C., & Chang, L. (2012). International Symposium on Safety Science and Engineering in China, An Experimental Study on the Burning Behavior of Fabric used Indoor. 43, 257-261. https://doi.org/10.1016/j.proeng.2012.08.044 es_ES
dc.description.references Ceylan, Ö., Alongi, J., Landuyt, L. Van, Frache, A., & Clerck, K. De. (2013). Combustion characteristics of cellulosic loose fibres. Fire and Materials, 37, 482-490. https://doi.org/10.1002/fam.2147 es_ES
dc.description.references Chee, S. S., Jawaid, M., Alothman, O. Y., & Yahaya, R. (2020). Thermo-oxidative stability and flammability properties of bamboo/kenaf/nanoclay/epoxy hybrid nanocomposites. RSC Advances, 10(37), 21686-21697. https://doi.org/10.1039/d0ra02126a es_ES
dc.description.references Chen, Q., & Zhao, T. (2016). The thermal decomposition and heat release properties of the nylon/cotton, polyester/cotton and Nomex/cotton blend fabrics. Textile Research Journal, 86(17), 1859-1868. https://doi.org/10.1177/0040517515617423 es_ES
dc.description.references Dewaghe, C., Lew, C. Y., Claes, M., Belgium, S. A., & Dubois, P. (2011). Fire-retardant applications of polymer-carbon nanotubes composites: Improved barrier effect and synergism. In Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications. Woodhead Publishing Limited. 718-745. https://doi.org/10.1533/9780857091390.3.718 es_ES
dc.description.references El Gazi, M., Sonnier, R., Giraud, S., Batistella, M., Basak, S., Dumazert, L., Hajj, R., & El Hage, R. (2021). Fire behavior of thermally thin materials in cone calorimeter. Polymers, 13(8). https://doi.org/10.3390/polym13081297 es_ES
dc.description.references Elsayed, E. M., Attia, N. F., & Alshehri, L. A. (2020). Innovative Flame Retardant and Antibacterial Fabrics Coating Based on Inorganic Nanotubes. Chemistry Select, 5(10), 2961-2965. https://doi.org/10.1002/slct.201904182 es_ES
dc.description.references Fateh, T., Kahanji, C., Joseph, P., & Rogaume, T. (2017). A study of the effect of thickness on the thermal degradation and flammability characteristics of some composite materials using a cone calorimeter. Journal of Fire Sciences, 35(6), 547-564. https://doi.org/10.1177/0734904117713690 es_ES
dc.description.references Godfrey, T., Auerbach, M., Proulx, G., Yip, P., & Grady, M. (2016). Modeling exposures of a nylon-cotton fabric to high radiant heat flux. Journal of Engineered Fibers and Fabrics, 11(3), 55-63. https://doi.org/10.1177/155892501601100308 es_ES
dc.description.references Grover, T., Khandual, A., & Luximon, A. (2014). Fire protection: Flammability and textile fibres. Colourage, 61(5), 39-45+48. es_ES
dc.description.references Hernandez, N., Sonnier, R., & Giraud, S. (2018). Influence of grammage on heat release rate of polypropylene fabrics. Journal of Fire Sciences, 36(1), 30-46. https://doi.org/10.1177/0734904117738928 es_ES
dc.description.references Huggett, C. (1980). Estimation of rate of heat release by means of oxygen consumption measurements. Fire and Materials, 4(2), 61-65. https://doi.org/10.1002/fam.810040202 es_ES
dc.description.references Kotresh, T. M., Indushekar, R., Subbulakshmi, M. S., Vijayalakshmi, S. N., Prasad, A. K., & Agrawal, A. K (2006). Evaluation of Commercial Flame Retardant Polyester Curtain Fabrics in the Cone Calorimeter. Journal of Industrial Textiles, 36, 47-58. https://doi.org/10.1177/1528083706064379 es_ES
dc.description.references Luo, S. L., Zhang, H. L., Zhan, Z. C., Mao, B. H., Jiang, Z. J., & Yan, Y. R. (2014). Investigation of flammable behavior of nylon 6 fabrics with and without spandex using cone calorimeter test and vertical burning test. Advanced Materials Research, 852, 644-647. https://doi.org/10.4028/www.scientific.net/AMR.852.644 es_ES
dc.description.references Moinuddin, K., Razzaque, Q. S., & Thomas, A. (2020). Numerical simulation of coupled pyrolysis and combustion reactions with directly measured fire properties. Polymers, 12(9), 2075. https://doi.org/10.3390/POLYM12092075 es_ES
dc.description.references Morgan, A. B., & Yip, P. W. (2016). Effects of laundering on military uniform fabric flammability. Fire and Materials, 40, 599-611. https://doi.org/10.1002/fam.2313 es_ES
dc.description.references Mouritz, A. P., Mathys, Z., & Gibson, A. G. (2006). Heat release of polymer composites in fire. Composites Part A: Applied Science and Manufacturing, 37(7), 1040-1054. https://doi.org/10.1016/j.compositesa.2005.01.030 es_ES
dc.description.references Nazaré, S., Kandola, B., & Horrocks, A. R. (2002). Use of cone calorimetry to quantify the burning hazard of apparel fabrics. Fire and Materials, 26(4-5), 191-199. https://doi.org/10.1002/fam.796 es_ES
dc.description.references Samolov, A. D., Simić, D. M., Fidanovski, B. Z., Obradović, V. M., Tomić, L. D., & Knežević, D. M. (2020). Improvement of VIS and IR camouflage properties by impregnating cotton fabric with PVB/IF-WS2. Defence Technology, 17(6), 2050-2056. https://doi.org/10.1016/j.dt.2020.10.008 es_ES
dc.description.references Tata, J., Alongi, J., Carosio, F., & Frache, A. (2011). Optimization of the procedure to burn textile fabrics by cone calorimeter: Part I.Combustion behavior of polyester. Fire and Materials, 35(6) 397-409. https://doi.org/10.1002/fam.1061 es_ES
dc.description.references White, R.H., Nam, S., Parikh, D.V. (2013). Cone calorimeter evaluation of two flame retardant cotton fabrics. Fire and Materials, 37, 46-57. https://doi.org/10.1002/fam.2111 es_ES
dc.description.references Xu, D., Wang, S., Wang, Y., Liu, Y., Dong, C., Jiang, Z., & Zhu, P. (2020). Preparation and mechanism of flameretardant cotton fabric with phosphoramidate siloxane polymer through multistep coating. Polymers, 12(7), 1538. https://doi.org/10.3390/polym12071538 es_ES
dc.description.references Xu, Q., Chen, L., Harries, K. A., & Li, X. (2017). Combustion performance of engineered bamboo from cone calorimeter tests. European Journal of Wood and Wood Products, 75(2), 161-173. https://doi.org/10.1007/s00107-016-1074-6 es_ES
dc.description.references Yahaya, R., Sapuan, S., Jawaid, M., Leman, Z., & Zainudin, E. (2014). Mechanical performance of woven kenafKevlar hybrid composites. Journal of Reinforced Plastics and Composites, 33, 2242-2254. https://doi.org/10.1177/0731684414559864 es_ES
dc.description.references Yahaya, R., Sapuan, S. M., Jawaid, M., Leman, Z., & Zainudin, E. S. (2016). Effect of fibre orientations on the mechanical properties of kenaf-aramid hybrid composites for spall-liner application. Defence Technology, 12(1), 52-58. https://doi.org/10.1016/j.dt.2015.08.005 es_ES
dc.description.references Yang, C .Q., & He, Q. (2011). Applications of micro-scale combustion calorimetry to the studies of cotton and nylon fabrics treated with organophosphorus flame retardants. Journal of Analytical and Applied Pyrolysis, 91(1), 125-133. https://doi.org/10.1016/j.jaap.2011.01.012 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem