- -

Relativistic positioning: including the influence of the gravitational action of the Sun and the Moon and the Earth's oblateness on Galileo satellites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Relativistic positioning: including the influence of the gravitational action of the Sun and the Moon and the Earth's oblateness on Galileo satellites

Mostrar el registro completo del ítem

Puchades Colmenero, N.; Arnau Córdoba, JV.; Fullana Alfonso, MJ. (2021). Relativistic positioning: including the influence of the gravitational action of the Sun and the Moon and the Earth's oblateness on Galileo satellites. Astrophysics and Space Science. 366(7):1-19. https://doi.org/10.1007/s10509-021-03973-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/181383

Ficheros en el ítem

Metadatos del ítem

Título: Relativistic positioning: including the influence of the gravitational action of the Sun and the Moon and the Earth's oblateness on Galileo satellites
Autor: Puchades Colmenero, Neus Arnau Córdoba, José Vicente Fullana Alfonso, Màrius Josep
Fecha difusión:
Resumen:
[EN] Uncertainties in the satellite world lines lead to dominant positioning errors. In the present work, using the approach presented in Puchades and Sáez (Astrophys. Space Sci. 352, 307¿320, 2014), a new analysis of these ...[+]
Palabras clave: Relativistic positioning systems , Methods: numerical , Reference systems
Derechos de uso: Reconocimiento (by)
Fuente:
Astrophysics and Space Science. (issn: 0004-640X )
DOI: 10.1007/s10509-021-03973-z
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10509-021-03973-z
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109753GB-C21/ES/POSICIONAMIENTO RELATIVISTA Y ECUACIONES DE EINSTEIN/
info:eu-repo/grantAgreement/GVA//AICO%2F2020%2F125/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109753GB-C22/ES/TEORIA DE CAMPOS Y GRAVITACION/
info:eu-repo/grantAgreement/UV//UV-INVAE19-1197312//Special Action Project/
Agradecimientos:
We would like to acknowledge our great debt to Professor Diego Pascual Saez Milan who was the pioneer of this research and worked in its theoretical approach. We worked together for a very long time in much of our common ...[+]
Tipo: Artículo

References

Ashby, N.: Relativity in the global positioning system. Living Rev. Relativ. 6, 1 (2003)

Brumberg, V.A., Kopejkin, S.M.: Relativistic reference systems and motion of test bodies in the vicinity of the Earth. Nuovo Cimento B 103(1), 63–98 (1989). https://doi.org/10.1007/BF02888894

C̆adez̆, A., Kostić, U., Delva, P.: Mapping the Spacetime Metric with a Global Navegation Satellite System, Final Ariadna Report 09/1301. Advanced Concepts Team, European Space Agency, Ljubljana (2010). https://www.esa.int/gsp/ACT/doc/ARI/ARI Study Report/ACTRPT-PHY-ARI-09-1301-MappingSpacetime-Ljubljana [+]
Ashby, N.: Relativity in the global positioning system. Living Rev. Relativ. 6, 1 (2003)

Brumberg, V.A., Kopejkin, S.M.: Relativistic reference systems and motion of test bodies in the vicinity of the Earth. Nuovo Cimento B 103(1), 63–98 (1989). https://doi.org/10.1007/BF02888894

C̆adez̆, A., Kostić, U., Delva, P.: Mapping the Spacetime Metric with a Global Navegation Satellite System, Final Ariadna Report 09/1301. Advanced Concepts Team, European Space Agency, Ljubljana (2010). https://www.esa.int/gsp/ACT/doc/ARI/ARI Study Report/ACTRPT-PHY-ARI-09-1301-MappingSpacetime-Ljubljana

Coll, B., Ferrando, J.J., Morales, J.A.: Two-dimensional approach to relativistic positioning systems. Phys. Rev. D 73, 084017 (2006a). https://doi.org/10.1103/PhysRevD.73.084017

Coll, B., Ferrando, J.J., Morales, J.A.: Positioning with stationary emitters in a two-dimensional space-time. Phys. Rev. D 74, 104003 (2006b). https://doi.org/10.1103/PhysRevD.74.104003

Coll, B., Ferrando, J.J., Morales–Lladosa, J.A.: Positioning systems in Minkowski spacetime: from emission to inertial coordinates. Class. Quantum Gravity 27, 065013 (2010). https://doi.org/10.1088/0264-9381/27/6/065013

Coll, B., Ferrando, J.J., Morales–Lladosa, J.A.: Positioning systems in Minkowski space-time: bifurcation problem and observational data. Phys. Rev. D 82, 084038 (2010b). https://doi.org/10.1103/PhysRevD.86.084036

Damour, T., Soffel, M., Chongming, X.: General-relativistic celestial mechanics. IV. Theory of satellite motion. Phys. Rev. D 49(2), 618–635 (1994). https://doi.org/10.1103/PhysRevD.49.618

Delva, P., Olympio, J.T.: Mapping the Spacetime Metric with GNSS: A Preliminary Study. Proceedings of the 2nd International Colloquium - Scientific and Fundamental Aspects of the Galileo Programme. The Advanced Concepts Team, European Space Agency, Padova (2009)

Fullana i Alfonso, M.J., Arnau Córdoba, J.V., Puchades Colmenero, N.: Satellite orbits in perturbed space-time: numerical simulations. In: 7th International Colloquium on Scientific and Fundamental Aspects of GNSS Proceedings, 4th-6th September 2019, Day 1, 03a-Precise Orbit Determination II P5 Fullana.pdf. ESA Conference Bureau and COSPAR eds. Zurich (2019). https://atpi.eventsair.com/QuickEventWebsitePortal/19a07---7th-gnss-colloquium/website/ExtraContent/ContentSubPage?page=1&subPage=5

Gomboc, A., Kostić, U., Horvart, M., Carloni, S., Delva, P.: Relativistic positioning systems and their scientific applications. Acta Futura 7, 79–85 (2013). https://doi.org/10.2420/ACT-BOK-AF

Górski, K.M., Hivon, E., Wandelt, B.D.: In: Banday, A.J., Sheth, R.K., Da Costa, L. (eds.) Proceedings of the MPA/ESO Conference on Evolution of Large Scale Structure, pp. 37–42 (1999). Printpartners Ipskamp Enschede. arXiv:astro-ph/9812350

Gourgoulhon, É.: Relativité générale. Master Astronomie, Astrophysique et Ingénierie Spatiale. Année M2 - Parcours Recherche 2013-2014. UE FC5. Observatoire de Paris, Universités Paris 6, Paris 7 et Paris 11. École Normale Supérieure. https://luth.obspm.fr/~luthier/gourgoulhon/fr/master/relatM2.pdf

Juang, J.C., Tsai, Y.F.: On exact solutions of the multi-constellation GNSS navigation problem. GPS Solut. 13, 57–64 (2009). https://doi.org/10.1007/s10291-008-0099-7

Kostić, U., Horvat, M., Gomboc, A.: Relativistic positioning system in perturbed space-time. Class. Quantum Gravity 32, 215004–215029 (2015). https://doi.org/10.1088/0264-9381/32/21/215004

Langley, R.B.: Dilution of precision. GPS World 10(5), 52–59 (1999)

Misner, Ch.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman, San Francisco (1973). ISBN 978-0-7167-0344-0

Montenbruck, O., Gill, E.: Satellite Orbits: Models, Methods and Applications. Springer, Heldeberg (2005). ISBN-13: 978-3540672807

Pascual-Sánchez, J.F.: Introducing relativity in global navigation satellite systems. Ann. Phys. 16, 258–273 (2007)

Philipp, D., Wöske, F., Biskupek, L., Hackmann, E., Mai, E., List, M., Lämmerzahl, C., Rievers, B.: Modeling approaches for precise relativistic orbits: analytical, Lie-series, and pN approximation. Adv. Space Res. 62, 921–934 (2018). https://doi.org/10.1016/j.asr.2018.05.020

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: In: Numerical Recipes in Fortran 77: The Art of Scientific Computing. Cambridge University Press, New York (1999)

Puchades, N., Sáez, D.: Relativistic positioning: four-dimensional numerical approach in Minkowski space-time. Astrophys. Space Sci. 341, 631–643 (2012). https://doi.org/10.1007/s10509-012-1135-1

Puchades, N., Sáez, D.: Relativistic positioning: errors due to uncertainties in the satellite world lines. Astrophys. Space Sci. 352, 307–320 (2014). https://doi.org/10.1007/s10509-014-1908-9

Puchades, N., Sáez, D.: Approaches to relativistic positioning around Earth and error estimations. Adv. Space Res. 57, 499–508 (2016). https://doi.org/10.1016/j.asr.2015.10.031

Resolutions of IAU 2000 Adopted at the 24th General Assembly, August 2000. Manchester. https://syrte.obspm.fr/IAU_resolutions/Resol-UAI.htm

Roh, K.-M.: Numerical evaluation of post-Newtonian perturbations on the Global Navigation Satellite System. J. Spacecr. Rockets 55(4), 1027–1032 (2018). https://doi.org/10.2514/1.A33980

Roh, K.-M., Kopeikin, S., Cho, J.-H.: Numerical simulation of the post-Newtonian equations of motion for the near Earth satellite with an application to the LARES satellite. Adv. Space Res. 58, 2255–2268 (2016). https://doi.org/10.1016/j.asr.2016.08.009

Seeber, G.: Satellite Geodesy, 2nd edn. De Gruyter, Hannover (2003). ISBN-13: 978-3110175493

Sharma, J., Ratanpal, B.S., Pirzada, U.M., Shah, V.: (2019). arXiv:1610.02156v5 [physics.space-ph]

Soffel, M., et al.: The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement. Astron. J. 126, 2687–2706 (2003). https://doi.org/10.1086/378162

Teunissen, P., Montenbruck, O.: Global Navigation Satellite Systems, Springer Handbook, 1st edn. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-42928-1. ISBN: 978-3-319-42926-7

Teyssandier, P., Le Poncin-Lafitte, C.: General post-Minkowskian expansion of time transfer functions. Class. Quantum Gravity 25, 145020 (2008). https://doi.org/10.1088/0264-9381/25/14/145020

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem