- -

Relativistic positioning: including the influence of the gravitational action of the Sun and the Moon and the Earth's oblateness on Galileo satellites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Relativistic positioning: including the influence of the gravitational action of the Sun and the Moon and the Earth's oblateness on Galileo satellites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Puchades Colmenero, Neus es_ES
dc.contributor.author Arnau Córdoba, José Vicente es_ES
dc.contributor.author Fullana Alfonso, Màrius Josep es_ES
dc.date.accessioned 2022-03-10T19:04:54Z
dc.date.available 2022-03-10T19:04:54Z
dc.date.issued 2021-07 es_ES
dc.identifier.issn 0004-640X es_ES
dc.identifier.uri http://hdl.handle.net/10251/181383
dc.description.abstract [EN] Uncertainties in the satellite world lines lead to dominant positioning errors. In the present work, using the approach presented in Puchades and Sáez (Astrophys. Space Sci. 352, 307¿320, 2014), a new analysis of these errors is developed inside a great region surrounding Earth. This analysis is performed in the framework of the so-called Relativistic Positioning Systems (RPS). Schwarzschild metric is used to describe the satellite orbits corresponding to the Galileo Satellites Constellation. Those orbits are circular with the Earth as their centre. They are defined as the nominal orbits. The satellite orbits are not circular due to the perturbations they have and to achieve a more realistic description such perturbations need to be taken into account. In Puchades and Sáez (Astrophys. Space Sci. 352, 307¿320, 2014) perturbations of the nominal orbits were statistically simulated. Using the formula from Coll et al. (Class. Quantum Gravity. 27, 065013, 2010) a user location is determined with the four satellites proper times that the user receives and with the satellite world lines. This formula can be used with any satellite description, although photons need to travel in a Minkowskian space-time. For our purposes, the computation of the photon geodesics in Minkowski spacetime is sufficient as demonstrated in Puchades and Sáez (Adv. Space Res. 57, 499¿508, 2016). The difference of the user position determined with the nominal and the perturbed M.J. Fullana i Alfonso mfullana@mat.upv.es 1 Institut Interuniversitari de Matemàtica Multidisciplinària, Universitat Politècnica de València, Camí de Vera, S/N, Valencia, 46022, Spain 2 Àrea d¿Enginyeria, Florida Universitària, Carrer del Rei En Jaume I, 2, Catarroja, València, 46470, Spain 3 Departament de Matemàtica Aplicada, Universitat de València, Av. Vicent Andrés Estellés, S/N, Burjassot 46100, València, Spain satellite orbits is computed. This difference is defined as the U-error. Now we compute the perturbed orbits of the satellites considering a metric that takes into account the gravitational effects of the Earth, theMoon and the Sun and also the Earth oblateness. A study of the satellite orbits in this new metric is first introduced. Then we compute the U-errors comparing the positions given with the Schwarzschild metric and the metric introduced here. A Runge-Kutta method is used to solve the satellite geodesic equations. Some improvements in the computation of the U-errors using both metrics are introduced with respect to our previous works. Conclusions and perspectives are also presented. es_ES
dc.description.sponsorship We would like to acknowledge our great debt to Professor Diego Pascual Saez Milan who was the pioneer of this research and worked in its theoretical approach. We worked together for a very long time in much of our common projects. He left us three years ago. There are no words to describe our gratitude, both for his scientific and his human teachings. We also acknowledge Dr. J.A. Morales-Lladosa for all his help. Dr. Pacome Delva should also be mentioned for the same reason. This work has been supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades and the Fondo Europeo de Desarrollo Regional, Projects PID2019-109753GB-C21 and PID2019-109753GB-C22, the Generalitat Valenciana Project AICO/2020/125 and the Universitat de Valencia Special Action Project UV-INVAE19-1197312. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Astrophysics and Space Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Relativistic positioning systems es_ES
dc.subject Methods: numerical es_ES
dc.subject Reference systems es_ES
dc.title Relativistic positioning: including the influence of the gravitational action of the Sun and the Moon and the Earth's oblateness on Galileo satellites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10509-021-03973-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109753GB-C21/ES/POSICIONAMIENTO RELATIVISTA Y ECUACIONES DE EINSTEIN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2020%2F125/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109753GB-C22/ES/TEORIA DE CAMPOS Y GRAVITACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UV//UV-INVAE19-1197312//Special Action Project/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Puchades Colmenero, N.; Arnau Córdoba, JV.; Fullana Alfonso, MJ. (2021). Relativistic positioning: including the influence of the gravitational action of the Sun and the Moon and the Earth's oblateness on Galileo satellites. Astrophysics and Space Science. 366(7):1-19. https://doi.org/10.1007/s10509-021-03973-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10509-021-03973-z es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 366 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\448260 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat de València es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Ashby, N.: Relativity in the global positioning system. Living Rev. Relativ. 6, 1 (2003) es_ES
dc.description.references Brumberg, V.A., Kopejkin, S.M.: Relativistic reference systems and motion of test bodies in the vicinity of the Earth. Nuovo Cimento B 103(1), 63–98 (1989). https://doi.org/10.1007/BF02888894 es_ES
dc.description.references C̆adez̆, A., Kostić, U., Delva, P.: Mapping the Spacetime Metric with a Global Navegation Satellite System, Final Ariadna Report 09/1301. Advanced Concepts Team, European Space Agency, Ljubljana (2010). https://www.esa.int/gsp/ACT/doc/ARI/ARI Study Report/ACTRPT-PHY-ARI-09-1301-MappingSpacetime-Ljubljana es_ES
dc.description.references Coll, B., Ferrando, J.J., Morales, J.A.: Two-dimensional approach to relativistic positioning systems. Phys. Rev. D 73, 084017 (2006a). https://doi.org/10.1103/PhysRevD.73.084017 es_ES
dc.description.references Coll, B., Ferrando, J.J., Morales, J.A.: Positioning with stationary emitters in a two-dimensional space-time. Phys. Rev. D 74, 104003 (2006b). https://doi.org/10.1103/PhysRevD.74.104003 es_ES
dc.description.references Coll, B., Ferrando, J.J., Morales–Lladosa, J.A.: Positioning systems in Minkowski spacetime: from emission to inertial coordinates. Class. Quantum Gravity 27, 065013 (2010). https://doi.org/10.1088/0264-9381/27/6/065013 es_ES
dc.description.references Coll, B., Ferrando, J.J., Morales–Lladosa, J.A.: Positioning systems in Minkowski space-time: bifurcation problem and observational data. Phys. Rev. D 82, 084038 (2010b). https://doi.org/10.1103/PhysRevD.86.084036 es_ES
dc.description.references Damour, T., Soffel, M., Chongming, X.: General-relativistic celestial mechanics. IV. Theory of satellite motion. Phys. Rev. D 49(2), 618–635 (1994). https://doi.org/10.1103/PhysRevD.49.618 es_ES
dc.description.references Delva, P., Olympio, J.T.: Mapping the Spacetime Metric with GNSS: A Preliminary Study. Proceedings of the 2nd International Colloquium - Scientific and Fundamental Aspects of the Galileo Programme. The Advanced Concepts Team, European Space Agency, Padova (2009) es_ES
dc.description.references Fullana i Alfonso, M.J., Arnau Córdoba, J.V., Puchades Colmenero, N.: Satellite orbits in perturbed space-time: numerical simulations. In: 7th International Colloquium on Scientific and Fundamental Aspects of GNSS Proceedings, 4th-6th September 2019, Day 1, 03a-Precise Orbit Determination II P5 Fullana.pdf. ESA Conference Bureau and COSPAR eds. Zurich (2019). https://atpi.eventsair.com/QuickEventWebsitePortal/19a07---7th-gnss-colloquium/website/ExtraContent/ContentSubPage?page=1&subPage=5 es_ES
dc.description.references Gomboc, A., Kostić, U., Horvart, M., Carloni, S., Delva, P.: Relativistic positioning systems and their scientific applications. Acta Futura 7, 79–85 (2013). https://doi.org/10.2420/ACT-BOK-AF es_ES
dc.description.references Górski, K.M., Hivon, E., Wandelt, B.D.: In: Banday, A.J., Sheth, R.K., Da Costa, L. (eds.) Proceedings of the MPA/ESO Conference on Evolution of Large Scale Structure, pp. 37–42 (1999). Printpartners Ipskamp Enschede. arXiv:astro-ph/9812350 es_ES
dc.description.references Gourgoulhon, É.: Relativité générale. Master Astronomie, Astrophysique et Ingénierie Spatiale. Année M2 - Parcours Recherche 2013-2014. UE FC5. Observatoire de Paris, Universités Paris 6, Paris 7 et Paris 11. École Normale Supérieure. https://luth.obspm.fr/~luthier/gourgoulhon/fr/master/relatM2.pdf es_ES
dc.description.references Juang, J.C., Tsai, Y.F.: On exact solutions of the multi-constellation GNSS navigation problem. GPS Solut. 13, 57–64 (2009). https://doi.org/10.1007/s10291-008-0099-7 es_ES
dc.description.references Kostić, U., Horvat, M., Gomboc, A.: Relativistic positioning system in perturbed space-time. Class. Quantum Gravity 32, 215004–215029 (2015). https://doi.org/10.1088/0264-9381/32/21/215004 es_ES
dc.description.references Langley, R.B.: Dilution of precision. GPS World 10(5), 52–59 (1999) es_ES
dc.description.references Misner, Ch.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman, San Francisco (1973). ISBN 978-0-7167-0344-0 es_ES
dc.description.references Montenbruck, O., Gill, E.: Satellite Orbits: Models, Methods and Applications. Springer, Heldeberg (2005). ISBN-13: 978-3540672807 es_ES
dc.description.references Pascual-Sánchez, J.F.: Introducing relativity in global navigation satellite systems. Ann. Phys. 16, 258–273 (2007) es_ES
dc.description.references Philipp, D., Wöske, F., Biskupek, L., Hackmann, E., Mai, E., List, M., Lämmerzahl, C., Rievers, B.: Modeling approaches for precise relativistic orbits: analytical, Lie-series, and pN approximation. Adv. Space Res. 62, 921–934 (2018). https://doi.org/10.1016/j.asr.2018.05.020 es_ES
dc.description.references Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: In: Numerical Recipes in Fortran 77: The Art of Scientific Computing. Cambridge University Press, New York (1999) es_ES
dc.description.references Puchades, N., Sáez, D.: Relativistic positioning: four-dimensional numerical approach in Minkowski space-time. Astrophys. Space Sci. 341, 631–643 (2012). https://doi.org/10.1007/s10509-012-1135-1 es_ES
dc.description.references Puchades, N., Sáez, D.: Relativistic positioning: errors due to uncertainties in the satellite world lines. Astrophys. Space Sci. 352, 307–320 (2014). https://doi.org/10.1007/s10509-014-1908-9 es_ES
dc.description.references Puchades, N., Sáez, D.: Approaches to relativistic positioning around Earth and error estimations. Adv. Space Res. 57, 499–508 (2016). https://doi.org/10.1016/j.asr.2015.10.031 es_ES
dc.description.references Resolutions of IAU 2000 Adopted at the 24th General Assembly, August 2000. Manchester. https://syrte.obspm.fr/IAU_resolutions/Resol-UAI.htm es_ES
dc.description.references Roh, K.-M.: Numerical evaluation of post-Newtonian perturbations on the Global Navigation Satellite System. J. Spacecr. Rockets 55(4), 1027–1032 (2018). https://doi.org/10.2514/1.A33980 es_ES
dc.description.references Roh, K.-M., Kopeikin, S., Cho, J.-H.: Numerical simulation of the post-Newtonian equations of motion for the near Earth satellite with an application to the LARES satellite. Adv. Space Res. 58, 2255–2268 (2016). https://doi.org/10.1016/j.asr.2016.08.009 es_ES
dc.description.references Seeber, G.: Satellite Geodesy, 2nd edn. De Gruyter, Hannover (2003). ISBN-13: 978-3110175493 es_ES
dc.description.references Sharma, J., Ratanpal, B.S., Pirzada, U.M., Shah, V.: (2019). arXiv:1610.02156v5 [physics.space-ph] es_ES
dc.description.references Soffel, M., et al.: The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement. Astron. J. 126, 2687–2706 (2003). https://doi.org/10.1086/378162 es_ES
dc.description.references Teunissen, P., Montenbruck, O.: Global Navigation Satellite Systems, Springer Handbook, 1st edn. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-42928-1. ISBN: 978-3-319-42926-7 es_ES
dc.description.references Teyssandier, P., Le Poncin-Lafitte, C.: General post-Minkowskian expansion of time transfer functions. Class. Quantum Gravity 25, 145020 (2008). https://doi.org/10.1088/0264-9381/25/14/145020 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem