- -

Influence of calcium ion-modified implant surfaces in protein adsorption and implant integration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of calcium ion-modified implant surfaces in protein adsorption and implant integration

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Anitua, Eduardo es_ES
dc.contributor.author Cerqueira, Andreia es_ES
dc.contributor.author Romero-Gavilán, Francisco es_ES
dc.contributor.author García-Arnáez, Iñaki es_ES
dc.contributor.author Martínez-Ramos, Cristina es_ES
dc.contributor.author Ozturan, Seda es_ES
dc.contributor.author Azkargorta, Mikel es_ES
dc.contributor.author Elortza, Félix es_ES
dc.contributor.author Gurruchaga, Mariló es_ES
dc.contributor.author Goñi, Isabel es_ES
dc.contributor.author Suay, Julio es_ES
dc.contributor.author Tejero, Ricardo es_ES
dc.date.accessioned 2022-04-05T06:55:13Z
dc.date.available 2022-04-05T06:55:13Z
dc.date.issued 2021-04-21 es_ES
dc.identifier.uri http://hdl.handle.net/10251/181802
dc.description.abstract [EN] Background Calcium (Ca) is a well-known element in bone metabolism and blood coagulation. Here, we investigate the link between the protein adsorption pattern and the in vivo responses of surfaces modified with calcium ions (Ca-ion) as compared to standard titanium implant surfaces (control). We used LC-MS/MS to identify the proteins adhered to the surfaces after incubation with human serum and performed bilateral surgeries in the medial section of the femoral condyles of 18 New Zealand white rabbits to test osseointegration at 2 and 8 weeks post-implantation (n=9). Results Ca-ion surfaces adsorbed 181.42 times more FA10 and 3.85 times less FA12 (p<0.001), which are factors of the common and the intrinsic coagulation pathways respectively. We also detected differences in A1AT, PLMN, FA12, KNG1, HEP2, LYSC, PIP, SAMP, VTNC, SAA4, and CFAH (p<0.01). At 2 and 8 weeks post-implantation, the mean bone implant contact (BIC) with Ca-ion surfaces was respectively 1.52 and 1.25 times higher, and the mean bone volume density (BVD) was respectively 1.35 and 1.13 times higher. Differences were statistically significant for BIC at 2 and 8 weeks and for BVD at 2 weeks (p<0.05). Conclusions The strong thrombogenic protein adsorption pattern at Ca-ion surfaces correlated with significantly higher levels of implant osseointegration. More effective implant surfaces combined with smaller implants enable less invasive surgeries, shorter healing times, and overall lower intervention costs, especially in cases of low quantity or quality of bone. es_ES
dc.description.sponsorship This work was supported by Universitat Jaume I under [POSDOC/2019/28], Generalitat Valenciana [GRISOLIAP/2018/091], University of the Basque Country under [UFI11/56], and Basque Government under [PRE_2017_2_0044]. CIC bioGUNE is supported by Basque Department of Industry, Tourism and Trade (Etortek and Elkartek programs), the Innovation Technology Department of the Bizkaia County; The ProteoRed-ISCIII (Grant PRB3 IPT17/0019); and CIBERehd Network and Severo Ochoa Grant (SEV-2016-0644). es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof International Journal of Implant Dentistry es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Titanium implants es_ES
dc.subject Osseointegration es_ES
dc.subject Blood coagulation es_ES
dc.subject Implant surface design es_ES
dc.subject Protein adsorption es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Influence of calcium ion-modified implant surfaces in protein adsorption and implant integration es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s40729-021-00314-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//POSDOC%2F2019%2F28/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F091/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Eusko Jaurlaritza//PRE_2017_2_0044/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV/EHU//UFI11%2F56/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//SEV-2016-0644/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PRB3 IPT17%2F0019/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Anitua, E.; Cerqueira, A.; Romero-Gavilán, F.; García-Arnáez, I.; Martínez-Ramos, C.; Ozturan, S.; Azkargorta, M.... (2021). Influence of calcium ion-modified implant surfaces in protein adsorption and implant integration. International Journal of Implant Dentistry. 7(1):1-11. https://doi.org/10.1186/s40729-021-00314-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s40729-021-00314-1 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2198-4034 es_ES
dc.identifier.pmid 33880662 es_ES
dc.identifier.pmcid PMC8058122 es_ES
dc.relation.pasarela S\458185 es_ES
dc.contributor.funder Eusko Jaurlaritza es_ES
dc.contributor.funder Universitat Jaume I es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universidad del País Vasco/Euskal Herriko Unibertsitatea es_ES
dc.description.references Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Reports. 2004;47:49–121. es_ES
dc.description.references Tejero R, Anitua E, Orive G. Toward the biomimetic implant surface: biopolymers on titanium-based implants for bone regeneration. Prog Polym Sci. 2014;39:1406–47. es_ES
dc.description.references Sul YT, Johansson C, Albrektsson T. A novel in vivo method for quantifying the interfacial biochemical bond strength of bone implants. J R Soc Interface. 2010;7:81–90. es_ES
dc.description.references Anitua E, Prado R, Orive G, Tejero R. Effects of calcium-modified titanium implant surfaces on platelet activation, clot formation, and osseointegration. J Biomed Mater Res A. 2015;103:969–80. es_ES
dc.description.references Hirsh SL, McKenzie DR, Nosworthy NJ, Denman JA, Sezerman OU, Bilek MMM. The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surfaces B Biointerfaces. 2013;103:395–404. es_ES
dc.description.references Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74. es_ES
dc.description.references O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KWH. The roles of ions on bone regeneration. 23. Drug Discov Today. 2018;23:879–90. es_ES
dc.description.references Palta S, Saroa R, Palta A. Overview of the coagulation system. Indian J Anaesth. 2014;58:515–23. es_ES
dc.description.references Scheraga HA. The thrombin-fibrinogen interaction. Biophys Chem. 2004;112:117–3. es_ES
dc.description.references Anitua E, Tejero R, Alkhraisat MH, Orive G. Platelet-rich plasma to improve the bio-functionality of biomaterials. BioDrugs. 2012;27:97–111. es_ES
dc.description.references Chen Z, Klein T, Murray RZ, Crawford R, Chang J, Wu C, et al. Osteoimmunomodulation for the development of advanced bone biomaterials. Materials Today. 2016;19:304–21. es_ES
dc.description.references Shiu HT, Goss B, Lutton C, Crawford R, Xiao Y. Formation of blood clot on biomaterial implants influences bone healing. Tissue Eng Part B Rev. 2014;20:697–712. es_ES
dc.description.references Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev. 2008;29:403–40. es_ES
dc.description.references Araújo-Gomes N, Romero-Gavilán F, García-Arnáez I, Martínez-Ramos C, Sánchez-Pérez AM, Azkargorta M, et al. Osseointegration mechanisms: a proteomic approach. J Biol Inorg Chem. 2018;23:459–70. es_ES
dc.description.references Cerqueira A, Romero-Gavilán F, García-Arnáez I, Martinez-Ramos C, Ozturan S, Iloro I, et al. Bioactive zinc-doped sol-gel coating modulates protein adsorption patterns and in vitro cell responses. Mater Sci Eng C. 2021;121:111839. es_ES
dc.description.references Cerqueira A, Romero-Gavilán F, Araújo-Gomes N, García-Arnáez I, Martinez-Ramos C, Ozturan S, et al. A possible use of melatonin in the dental field: protein adsorption and in vitro cell response on coated titanium. Mater Sci Eng C. 2020;116:111262. es_ES
dc.description.references Romero-Gavilan F, Sánchez-Pérez AM, Araújo-Gomes N, Azkargorta M, Iloro I, Elortza F, et al. Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants in vivo. Biofouling. 2017;33:676–89. es_ES
dc.description.references Araújo-Gomes N, Romero-Gavilán F, Zhang Y, Martinez-Ramos C, Elortza F, Azkargorta M, et al. Complement proteins regulating macrophage polarisation on biomaterials. Colloids Surfaces B Biointerfaces. 2019;181:125–33. es_ES
dc.description.references Castañeda S, Largo R, Calvo E, Rodríguez-Salvanés F, Marcos ME, Díaz-Curiel M, et al. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skeletal Radiol. 2006;35:34–41. es_ES
dc.description.references Wang X, Mabrey JD, Agrawal CM. An interspecies comparison of bone fracture properties. Biomed Mater Eng. 1998;8:1–9. es_ES
dc.description.references Dahlin C, JC. Osseointegration of Implants. In: Nevins M, GW, editors. Osteology guidelines for oral and maxillofacial regeneration. London: Quintessence Publishing Co Ltd; 2011. p. 103–21. es_ES
dc.description.references Romero-Gavilán F, Gomes NC, Ródenas J, Sánchez A, Azkargorta M, Iloro I, et al. Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. Biofouling. 2017;33:98–111. es_ES
dc.description.references Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62. es_ES
dc.description.references Joshy KS, Snigdha S, TS. Plasma-modified polymeric materials for scaffolding of bone tissue engineering. In: Thomas S, Mozetic M, Cvelbar U, Spatenka P, PJ, editors. Non-thermal plasma technology for polymeric materials. Amsterdam: Elsevier; 2019. p. 439–58. es_ES
dc.description.references Tejero R, Rossbach P, Keller B, Anitua E, Reviakine I. Time-of-flight secondary ion mass spectrometry with principal component analysis of titania-blood plasma interfaces. Langmuir. 2013;29:902–12. es_ES
dc.description.references Anitua E, Piñas L, Murias A, Prado R, Tejero R. Effects of calcium ions on titanium surfaces for bone regeneration. Colloids Surf B Biointerfaces. 2015;130:173–81. es_ES
dc.description.references Tengvall P. Proteins at titanium interfaces. In: Brunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine. Berlin: Springer-Verlag; 2001. p. 458–83. es_ES
dc.description.references Kopf BS, Ruch S, Berner S, Spencer ND, Maniura-Weber K. The role of nanostructures and hydrophilicity in osseointegration: in-vitro protein-adsorption and blood-interaction studies. J Biomed Mater Res A. 2015;103:2661–72. es_ES
dc.description.references Minelli C, Kikuta A, Tsud N, Ball MD, Yamamoto A. A micro-fluidic study of whole blood behaviour on PMMA topographical nanostructures. J Nanobiotechnology. 2008;6:3. es_ES
dc.description.references Sutherland DS, Broberg M, Nygren H, Kasemo B. Influence of nanoscale surface topography and chemistry on the functional behaviour of an adsorbed model macromolecule. Macromol Biosci. 2001;1:270–3. es_ES
dc.description.references Anitua E, Tejero R, Zalduendo MM, Orive G. Plasma rich in growth factors (PRGF-Endoret) promotes bone tissue regeneration by stimulating proliferation, migration and autocrine secretion on primary human osteoblasts. J Periodontol. 2013;84(8):1180–90. es_ES
dc.description.references Sánchez-Ilárduya MB, Trouche E, Tejero R, Orive G, Reviakine I, Anitua E. Time-dependent release of growth factors from implant surfaces treated with plasma rich in growth factors. J Biomed Mater Res A. 2013;101:1478–88. es_ES
dc.description.references Hong J, Andersson J, Ekdahl KN, Elgue G, Axén N, Larsson R, et al. Titanium is a highly thrombogenic biomaterial: possible implications for osteogenesis. Thromb Haemost. 1999;82:58–64. es_ES
dc.description.references Rompen E, Domken O, Degidi M, Pontes AEF, Piattelli A. The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: a literature review. Clin Oral Implants Res. 2006;17:55–67. es_ES
dc.description.references Hong J, Azens A, Ekdahl KN, Granqvist CG, Nilsson B. Material-specific thrombin generation following contact between metal surfaces and whole blood. Biomaterials. 2005;26:1397–403. es_ES
dc.description.references Walivaara B, Aronsson BO, Rodahl M, Lausmaa J, Tengvall P. Titanium with different oxides: in vitro studies of protein adsorption and contact activation. Biomaterials. 1994;15:827–34. es_ES
dc.description.references Costa-Neto CM, Dillenburg-Pilla P, Heinrich TA, Parreiras-e-Silva LT, Pereira MGAG, Reis RI, et al. Participation of kallikrein-kinin system in different pathologies. Int Immunopharmacol. 2008;8:135–42. es_ES
dc.description.references da Costa PLN, Sirois P, Tannock IF, Chammas R. The role of kinin receptors in cancer and therapeutic opportunities. Cancer Lett. 2014;345:27–38. es_ES
dc.description.references Gruber R, Karreth F, Kandler B, Fuerst G, Rot A, Fischer MB, et al. Platelet-released supernatants increase migration and proliferation, and decrease osteogenic differentiation of bone marrow-derived mesenchymal progenitor cells under in vitro conditions. Platelets. 2004;15:29–35. es_ES
dc.description.references Nakamura S, Matsumoto T, Sasaki J-I, Egusa H, Lee KY, Nakano T, et al. Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Eng Part A. 2010;16:2467–73. es_ES
dc.description.references Anitua E, Tejero R, Pacha-Olivenza MÁ, Fernández-Calderón MC, Delgado-Rastrollo M, Zalduendo MM, et al. Balancing microbial and mammalian cell functions on calcium ion-modified implant surfaces. J Biomed Mater Res - Part B Appl Biomater. 2017;106:421–32. es_ES
dc.description.references Bottazzi B, Inforzato A, Messa M, Barbagallo M, Magrini E, Garlanda C, et al. The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodeling. J Hepatol. 2016;64:1416–27. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem