- -

Estado del arte de la educación en automática

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estado del arte de la educación en automática

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz de la Peña, David es_ES
dc.contributor.author Domínguez, Manuel es_ES
dc.contributor.author Gomez-Estern, Fabio es_ES
dc.contributor.author Reinoso, Óscar es_ES
dc.contributor.author Torres, Fernando es_ES
dc.contributor.author Dormido, Sebastián es_ES
dc.date.accessioned 2022-05-24T07:02:36Z
dc.date.available 2022-05-24T07:02:36Z
dc.date.issued 2022-04-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/182818
dc.description.abstract [EN] Control education is a mature area in which many professors and researchers have worked hard to face the challenge of providing a versatile education, with a strong scientific base. All this without losing sight of the needs of the industry; adapting the contents, methodologies and tools to the continuous social and technological changes of our time. This article presents a reflection on the role of automation in today s society, a review of the traditional objectives of control education through seminal works in the area and finally a review of the main current trends. es_ES
dc.description.abstract [ES] La educación en automática es un área madura en la que multitud de profesores e investigadores han trabajado intensamente para afrontar el reto de proporcionar una educación versátil, con una fuerte base cientí­fica. Todo ello sin perder de vista las necesidades de la industria; adaptando los contenidos, las metodologí­as y las herramientas a los continuos cambios sociales y tecnológicos de nuestro tiempo. Este artí­culo presenta una reflexión sobre el papel de la automática en la sociedad actual, una revisión de los objetivos tradicionales de la educación en automática a través de los trabajos seminales del área y finalmente una revisión de las principales tendencias actuales. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Control engineering curriculum es_ES
dc.subject E-learning es_ES
dc.subject Distance learning and learning management systems es_ES
dc.subject Experimental platforms es_ES
dc.subject Automatic evaluation es_ES
dc.subject Long-life learning es_ES
dc.subject Teaching tools and laboratories es_ES
dc.subject Interactive tools es_ES
dc.subject Virtual and remote laboratories es_ES
dc.subject Teaching methodologies es_ES
dc.subject Industry relations es_ES
dc.subject Curricula del ingeniero de control es_ES
dc.subject Educación a distancia y sistemas de gestión del aprendizaje es_ES
dc.subject Evaluación automática es_ES
dc.subject Formación continua es_ES
dc.subject Herramientas docentes y laboratorios es_ES
dc.subject Herramientas interactivas es_ES
dc.subject Laboratorios virtuales y remotos es_ES
dc.subject Prácticas docentes es_ES
dc.subject Relaciones con la industria es_ES
dc.subject Entornos de experimentación es_ES
dc.title Estado del arte de la educación en automática es_ES
dc.title.alternative State of the art of control education es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.16989
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Muñoz De La Peña, D.; Domínguez, M.; Gomez-Estern, F.; Reinoso, Ó.; Torres, F.; Dormido, S. (2022). Estado del arte de la educación en automática. Revista Iberoamericana de Automática e Informática industrial. 19(2):117-131. https://doi.org/10.4995/riai.2022.16989 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.16989 es_ES
dc.description.upvformatpinicio 117 es_ES
dc.description.upvformatpfin 131 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\16989 es_ES
dc.description.references Akçayır, G., Akçayır, M., 2018. The flipped classroom: A review of its advantages and challenges. Computers & Education 126, 334-345. https://doi.org/10.1016/j.compedu.2018.07.021 es_ES
dc.description.references Aljaloud, A., Gromik, N., Billingsley, W., Kwan, P., 01 2015. Research trends in student response systems: A literature review. International Journal of Learning Technology 10, 313. https://doi.org/10.1504/IJLT.2015.074073 es_ES
dc.description.references Antsaklis, P., Basar, T., DeCarlo, R., McClamroch, N., Spong, M., Yurkovich, S., 1998. NSF/CSS workshop on new directions in control engineering education. National Science Foundation and IEEE Control Systems Society, Tech. rep. es_ES
dc.description.references Aracil, J., 2010. Fundamentos, método e historia de la Ingeniería: una mirada al mundo de los Ingenieros. Síntesis. es_ES
dc.description.references Arevalo, V., Vicente-del Rey, J., Garcia-Morales, I., Rivas-Blanco, I., 2020. Minivideos tutorials to reinforce the learning of basic concepts for an automatic control course. Revista Iberoamericana de Automática e Informática Industrial17 (2), 107-115. https://doi.org/10.4995/riai.2020.12156 es_ES
dc.description.references Åström, K. J., 1999. Automatic control-the hidden technology. In: Advances in Control. Springer, pp. 1-28. https://doi.org/10.1007/978-1-4471-0853-5_1 es_ES
dc.description.references Åström, K. J., Kumar, P. R., 2014. Control: A perspective. Automatica 50 (1), 3-43. https://doi.org/10.1016/j.automatica.2013.10.012 es_ES
dc.description.references Becerra-Alonso, D., Lopez-Cobo, I., Gómez-Rey, P., Fernández-Navarro, F., Barbera, E., 2020. Eduzinc: A tool for the creation and assessment of student learning activities in complex open, online, and flexible learning environments. Distance Education 41 (1), 86-105. https://doi.org/10.1080/01587919.2020.1724769 es_ES
dc.description.references Bers, M. U., Portsmore, M., 2005. Teaching partnerships: Early childhood and engineering students teaching math and science through robotics. Journal of Science Education and Technology 14 (1), 59-73. https://doi.org/10.1007/s10956-005-2734-1 es_ES
dc.description.references Bristol, E., 1986. An industrial point of view on control teaching and theory. IEEE Control Systems Magazine 6 (1), 24-27. https://doi.org/10.1109/MCS.1986.1105041 es_ES
dc.description.references Candelas, F., Torres, F., Ortiz, F., Gil, P., Pomares, J., Puente, S., 2003. Teaching and learning robotics with internet teleoperation. In: Proc. Second International Conference on Multimedia and Information & Communication Technologies in Education. Vol. 3. pp. 1827-1831. es_ES
dc.description.references Chandrasekaran, S., Stojcevski, A., Littlefair, G., Joordens, M., 2013. Projectoriented design-based learning: aligning students' views with industry needs. International Journal of Engineering Education 29 (5), 1109-1118. es_ES
dc.description.references Chen, J., Kolmos, A., Du, X., 2021. Forms of implementation and challenges of PBL in engineering education: a review of literature. European Journal of Engineering Education 46 (1), 90-115. https://doi.org/10.1080/03043797.2020.1718615 es_ES
dc.description.references Chung, C. C., Cartwright, C., Cole, M., 2014. Assessing the impact of an autonomous robotics competition for STEM education. Journal of STEM Education: Innovations and Research 15 (2). es_ES
dc.description.references del Pozo, A., Escaño, J., Muñoz de la Peña, D., Gómez-Estern, F., 2013. 3D simulator of industrial systems for control education with automated assessment. IFAC Proceedings Volumes 46 (17), 321-326. https://doi.org/10.3182/20130828-3-UK-2039.00070 es_ES
dc.description.references Dormido, S., 2004. Control learning: Present and future. Annual Reviews in control 28 (1), 115-136. https://doi.org/10.1016/j.arcontrol.2003.12.002 es_ES
dc.description.references Díaz, J. M., Costa-Castelló, R., Dormido, S., 2021. Un enfoque interactivo para el análisis y diseño de sistemas de control utilizando el método del lugar de las raíces. Revista Iberoamericana de Automática e Informática industrial 18 (2), 172-188. https://doi.org/10.4995/riai.2020.13811 es_ES
dc.description.references Farias, G., Muñoz de la Peña, D., Gómez-Estern, F., De la Torre, L., Sánchez, C., Dormido, S., 2016. Adding automatic evaluation to interactive virtual labs. Interactive Learning Environments 24 (7), 1456-1476. https://doi.org/10.1080/10494820.2015.1022559 es_ES
dc.description.references Faure, E., Herrera, F., Kaddoura, A., Lopes, H., Petrovski, A. V., Rahnema, M., Ward, F., 1972. Learning to be: The world of education today and tomorrow. Unesco. es_ES
dc.description.references Foulis, C. Y., Papadopoulou, S., 2018. A portable low-cost arduino-based laboratory kit for control education. In: 2018 UKACC 12th International Conference on Control (CONTROL). IEEE, pp. 435-435. https://doi.org/10.1109/CONTROL.2018.8516817 es_ES
dc.description.references Frank, M., Lavy, I., Elata, D., 2003. Implementing the project-based learning approach in an academic engineering course. International Journal of Technology and Design Education 13 (3), 273-288. https://doi.org/10.1023/A:1026192113732 es_ES
dc.description.references Froyd, J. E., Wankat, P. C., Smith, K. A., 2012. Five major shifts in 100 years of engineering education. Proceedings of the IEEE 100 (Special Centennial Issue), 1344-1360. https://doi.org/10.1109/JPROC.2012.2190167 es_ES
dc.description.references Göl, Ö., Nafalski, A., 2007. Collaborative learning in engineering education. Global J. of Engng. Educ 11 (2). es_ES
dc.description.references Harrington, C., Zakrajsek, T. D., 2017. Dynamic lecturing: Research-based strategies to enhance lecture effectiveness. Stylus Publishing, LLC. es_ES
dc.description.references Hartikainen, S., Rintala, H., Pylväs, L., Nokelainen, P., 2019. The concept of active learning and the measurement of learning outcomes: A review of research in engineering higher education. Education Sciences 9 (4). https://doi.org/10.3390/educsci9040276 es_ES
dc.description.references Heradio, R., de la Torre, L., Dormido, S., 2016a. Virtual and remote labs in control education: A survey. Annual Reviews in Control 42, 1-10. https://doi.org/10.1016/j.arcontrol.2016.08.001 es_ES
dc.description.references Heradio, R., De La Torre, L., Galan, D., Cabrerizo, F. J., Herrera-Viedma, E., Dormido, S., 2016b. Virtual and remote labs in education: A bibliometric analysis. Computers & Education 98, 14-38. https://doi.org/10.1016/j.compedu.2016.03.010 es_ES
dc.description.references Huang, R., Ritzhaupt, A. D., Sommer, M., Zhu, J., Stephen, A., Valle, N., Hampton, J., Li, J., 2020. The impact of gamification in educational settings on student learning outcomes: A meta-analysis. Educational Technology Research and Development 68 (4), 1875-1901. https://doi.org/10.1007/s11423-020-09807-z es_ES
dc.description.references Keady, G., Fitz-Gerald, G., Gamble, G., Sangwin, C., 2012. Computer-aided assessment in mathematical sciences. In: Proceedings of The Australian Conference on Science and Mathematics Education. es_ES
dc.description.references Kolberg, E., Orlev, N., 2001. Robotics learning as a tool for integrating science technology curriculum in K-12 schools. In: 31st Annual Frontiers in Education Conference. Impact on Engineering and Science Education. Conference Proceedings (Cat. No. 01CH37193). Vol. 1. IEEE, pp. T2E-12. es_ES
dc.description.references Lamnabhi-Lagarrigue, F., Annaswamy, A., Engell, S., Isaksson, A., Khargonekar, P., Murray, R. M., Nijmeijer, H., Samad, T., Tilbury, D., Van den Hof, P., 2017. Systems & control for the future of humanity, research agenda: Current and future roles, impact and grand challenges. Annual Reviews in Control 43, 1-64. https://doi.org/10.1016/j.arcontrol.2017.04.001 es_ES
dc.description.references Lehmann, M., Christensen, P., Du, X., Thrane, M., 2008. Problem-oriented and project-based learning (POPBL) as an innovative learning strategy for sustainable development in engineering education. European Journal of Engineering Education 33 (3), 283-295. https://doi.org/10.1080/03043790802088566 es_ES
dc.description.references Lerma, E., Costa-Castelló, R., Griñó, R., Sanchis, C., 2021. Herramientas para la docencia de control digital en grados de ingeniería. Revista Iberoamericana de Automática e Informática industrial 18 (2), 189-199. https://doi.org/10.4995/riai.2020.13756 es_ES
dc.description.references Membrillo-Hernández, J., de Jesús Ramírez-Cadena, M., Ramírez-Medrano, A., García-Castelán, R. M., García-García, R., 2021. Implementation of the challenge-based learning approach in academic engineering programs. International Journal on Interactive Design and Manufacturing 15 (2), 287-298. https://doi.org/10.1007/s12008-021-00755-3 es_ES
dc.description.references Muñoz de la Peña, D., Gómez-Estern, F., Dormido, S., 2012. A new internet tool for automatic evaluation in control systems and programming. Computers & Education 59 (2), 535-550. https://doi.org/10.1016/j.compedu.2011.12.016 es_ES
dc.description.references Murray, R. M., Astrom, K. J., Boyd, S. P., Brockett, R. W., Stein, G., 2003. Future directions in control in an information-rich world. IEEE Control Systems Magazine 23 (2), 20-33. https://doi.org/10.1109/MCS.2003.1188769 es_ES
dc.description.references Rajkumar, K., Srinivas, D., Anuradha, P., RajeshwarRao, A., 2021. Problemoriented and project-based learning (POPPL) as an innovative learning strategy for sustainable development in engineering education. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.01.796 es_ES
dc.description.references Reguera, P., García, D., Domínguez, M., Prada, M., Alonso, S., 2015. A low-cost open source hardware in control education. case study: Arduinofeedback ms-150. IFAC-PapersOnLine 48 (29), 117-122. https://doi.org/10.1016/j.ifacol.2015.11.223 es_ES
dc.description.references Robinson, M., 2005. Robotics-driven activities: Can they improve middle school science learning? Bulletin of Science, Technology & Society 25 (1), 73-84. https://doi.org/10.1177/0270467604271244 es_ES
dc.description.references Rossiter, A., Serbezov, A., Visioli, A., Žáková, K., Huba, M., 2020. A survey of international views on a first course in systems and control for engineering undergraduates. IFAC Journal of Systems and Control 13, 100092. https://doi.org/10.1016/j.ifacsc.2020.100092 es_ES
dc.description.references Rossiter, J., 2019. Evaluation of software tools for formative assessment of control topics. IFAC-PapersOnLine 52 (9), 292-297. https://doi.org/10.1016/j.ifacol.2019.08.223 es_ES
dc.description.references Rossiter, J., Pasik-Duncan, B., Dormido, S., Vlacic, L., Jones, B., Murray, R., 2018. A survey of good practice in control education. European Journal of Engineering Education 43 (6), 801-823. https://doi.org/10.1080/03043797.2018.1428530 es_ES
dc.description.references Samad, T., Annaswamy, A. M., 2013. The Impact of Control Technology, 2nd edition. IEEE Control Systems Society. es_ES
dc.description.references Sánchez, C., Muñoz de la Peña, D., Gómez-Estern, F., 2020. Automated generation of control design benchmark problems for computer-assessed education with doctus. Revista Iberoamericana de Automática e Informática Industrial 17 (1), 1-9. https://doi.org/10.4995/riai.2019.11243 es_ES
dc.description.references Sánchez, J., Dormido, S., Esquembre, F., 2005. The learning of control concepts using interactive tools. Computer Applications in Engineering Education 13 (1), 84-98. https://doi.org/10.1002/cae.20033 es_ES
dc.description.references Soriano, A., Marin, L., Valles, M., Valera, A., Albertos, P., 2014. Low cost platform for automatic control education based on open hardware. IFAC Proceedings Volumes 47 (3), 9044-9050. https://doi.org/10.3182/20140824-6-ZA-1003.01909 es_ES
dc.description.references Stein, G., 2003. Respect the unstable. IEEE Control systems magazine 23 (4), 12-25. https://doi.org/10.1109/MCS.2003.1213600 es_ES
dc.description.references Wagner, S. P., 1998. Robotics and children: Science achievement and problem solving. Journal of Computing in Childhood Education 9 (2), 149-92. es_ES
dc.description.references Ziegler, J. G., Nichols, N. B., et al., 1942. Optimum settings for automatic controllers. trans. ASME 64 (11). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem