Mostrar el registro sencillo del ítem
dc.contributor.author | Stewart, Alexander Wyn | es_ES |
dc.contributor.author | Bouich, Amal | es_ES |
dc.contributor.author | Marí, B. | es_ES |
dc.date.accessioned | 2022-05-25T18:04:12Z | |
dc.date.available | 2022-05-25T18:04:12Z | |
dc.date.issued | 2021-12 | es_ES |
dc.identifier.issn | 0022-2461 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/182924 | |
dc.description.abstract | [EN] All inorganic lead-based perovskites containing bromine-iodine alloys, such as CsPbIBr2, have arisen as one of the most attractive candidates for absorber layers in solar cells. That said, there remains a large gap when it comes to film and crystal quality between the inorganic and hybrid perovskites. In this work, antisolvent engineering is employed as a simple and reproducible method for improving CsPbIBr2 thin films. We found that both the antisolvent used and the conditions under which it was applied have a measurable impact on both the quality and stability of the final product. We arrived at this conclusion by characterising the samples using scanning electron microscopy, X-ray diffraction, UV-visible and photoluminescence measurements, as well as employing a novel system to quantify stability. Our findings, and the application of our novel method for quantifying stability, demonstrate the ability to significantly enhance CsPbIBr2 samples, produced via a static one-step spin coating method, by applying isopropanol 10 s after commencing the spin programme. The antisolvent quenched CsPbIBr2 films demonstrate both improved crystallinity and an extended lifespan | es_ES |
dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This study was funded by the Generalitat Valenciana and the European Union (ACIF/2020/286) and the Ministerio de Economía y Competitividad (Grant Number PID2019-107137RB-C21) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Materials Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Enhancing the stability and crystallinity of CsPbIBr2 through antisolvent engineering | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10853-021-06552-3 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107137RB-C21/ES/MEJORANDO LA PRODUCCION DE ENERGIA SOLAR CON PEROVSKITAS INORGANICAS.SINTESIS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2020%2F286//AYUDA PREDOCTORAL GVA-STEWART. PROYECTO: PEROVSKITAS HIBRIDAS PARA APLICACIONES FOTOVOLTAICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada | es_ES |
dc.description.bibliographicCitation | Stewart, AW.; Bouich, A.; Marí, B. (2021). Enhancing the stability and crystallinity of CsPbIBr2 through antisolvent engineering. Journal of Materials Science. 56(36):20071-20086. https://doi.org/10.1007/s10853-021-06552-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10853-021-06552-3 | es_ES |
dc.description.upvformatpinicio | 20071 | es_ES |
dc.description.upvformatpfin | 20086 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 56 | es_ES |
dc.description.issue | 36 | es_ES |
dc.relation.pasarela | S\446924 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.description.references | Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4:3623–3630 | es_ES |
dc.description.references | Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 29 December 2020 | es_ES |
dc.description.references | Wang T, Daiber B, Frost JM et al (2017) Indirect to direct bandgap transition in methylammonium lead halide perovskite. Energy Environ Sci 10:509–515. https://doi.org/10.1039/c6ee03474h | es_ES |
dc.description.references | Miyata A, Mitioglu A, Plochocka P et al (2015) Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat Phys 11:582–587. https://doi.org/10.1038/nphys3357 | es_ES |
dc.description.references | D’Innocenzo V, Grancini G, Alcocer MJP et al (2014) Excitons versus free charges in organo-lead tri-halide perovskites. Nat Commun 5. https://doi.org/10.1038/ncomms4586 | es_ES |
dc.description.references | Herz LM (2017) Charge-carrier mobilities in metal Halide perovskites: fundamental mechanisms and limits. ACS Energy Lett 2:1539–1548 | es_ES |
dc.description.references | Alcocer MJP, Leijtens T, Herz LM et al (2013) Electron-hole diffusion lengths exceeding trihalide perovskite absorber. Science 342(80):341–344. https://doi.org/10.1126/science.1243982 | es_ES |
dc.description.references | Xing G, Mathews N, Sun S et al (2013) Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(80):344–347. https://doi.org/10.1126/science.1243167 | es_ES |
dc.description.references | Leguy A, Hu Y, Campoy-quiles M et al (2015) The reversible hydration of CHNHPbI in films, single crystals and solar cells the reversible hydration of CH3NH3PbI3 in films, single crystals and solar cells. Chem Mater 27:3397–3407. https://doi.org/10.1021/acs.chemmater.5b00660 | es_ES |
dc.description.references | Yi C, Luo J, Meloni S et al (2016) Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ Sci 9:656–662. https://doi.org/10.1039/c5ee03255e | es_ES |
dc.description.references | Jodlowski AD, Roldán-Carmona C, Grancini G et al (2017) Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nat Energy 2:972–979. https://doi.org/10.1038/s41560-017-0054-3 | es_ES |
dc.description.references | Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52:9019–9038. https://doi.org/10.1021/ic401215x | es_ES |
dc.description.references | Saliba M, Matsui T, Seo JY et al (2016) Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989–1997. https://doi.org/10.1039/c5ee03874j | es_ES |
dc.description.references | Liu C, Li W, Zhang C et al (2018) All-Inorganic CsPbI2Br Perovskite Solar Cells with High Efficiency Exceeding 13%. J Am Chem Soc 140:3825–3828. https://doi.org/10.1021/jacs.7b13229 | es_ES |
dc.description.references | Ma Q, Huang S, Wen X et al (2016) Hole transport layer free inorganic CsPbIBr 2 perovskite solar cell by dual source thermal evaporation. Adv Energy Mater 6:2–6. https://doi.org/10.1002/aenm.201502202 | es_ES |
dc.description.references | Han Y, Meyer S, Dkhissi Y et al (2015) Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J Mater Chem A 3:8139–8147. https://doi.org/10.1039/c5ta00358j | es_ES |
dc.description.references | Divitini G, Cacovich S, Matteocci F et al (2016) In situ observation of heat-induced degradation of perovskite solar cells. Nat Energy 1. https://doi.org/10.1038/NENERGY.2015.12 | es_ES |
dc.description.references | Lee SW, Kim S, Bae S et al (2016) UV degradation and recovery of perovskite solar cells. Sci Rep 6:1–10. https://doi.org/10.1038/srep38150 | es_ES |
dc.description.references | Wang D, Wright M, Elumalai NK, Uddin A (2016) Stability of perovskite solar cells. Sol Energy Mater Sol Cells 147:255–275. https://doi.org/10.1016/j.solmat.2015.12.025 | es_ES |
dc.description.references | Straus DB, Guo S, Abeykoon AM, Cava RJ (2020) Understanding the instability of the Halide perovskite CsPbI3 through temperature-dependent structural analysis. Adv Mater 32:1–8. https://doi.org/10.1002/adma.202001069 | es_ES |
dc.description.references | Liang J, Liu Z, Qiu L et al (2018) Enhancing optical, electronic, crystalline, and morphological properties of Cesium Lead Halide by Mn substitution for high-stability all-inorganic Perovskite solar cells with carbon electrodes. Adv Energy Mater 8:1–7. https://doi.org/10.1002/aenm.201800504 | es_ES |
dc.description.references | Guo Y, Zhao F, Tao J et al (2019) Efficient and hole-transporting-layer-free CsPbI 2 Br planar heterojunction Perovskite solar cells through Rubidium passivation. Chemsuschem 12:983–989. https://doi.org/10.1002/cssc.201802690 | es_ES |
dc.description.references | Zhu W, Zhang Q, Chen D et al (2018) Intermolecular exchange boosts efficiency of air-stable, carbon-based all-inorganic planar CsPbIBr 2 Perovskite solar cells to over 9%. Adv Energy Mater 8:1–11. https://doi.org/10.1002/aenm.201802080 | es_ES |
dc.description.references | Mariotti S, Hutter OS, Phillips LJ et al (2018) Stability and performance of CsPbI2Br thin films and solar cell devices. ACS Appl Mater Interfaces 10:3750–3760. https://doi.org/10.1021/acsami.7b14039 | es_ES |
dc.description.references | Lau CFJ, Deng X, Ma Q et al (2016) CsPbIBr 2 Perovskite solar cell by spray-assisted deposition. ACS Energy Lett 1:573–577. https://doi.org/10.1021/acsenergylett.6b00341 | es_ES |
dc.description.references | Jošt M, Kegelmann L, Korte L, Albrecht S (2020) Monolithic Perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv Energy Mater 10. https://doi.org/10.1002/aenm.201904102 | es_ES |
dc.description.references | Wang H, Li H, Cao S et al (2020) Interface modulator of ultrathin magnesium oxide for low-temperature-processed inorganic CsPbIBr 2 Perovskite solar cells with efficiency over 11%. Sol RRL 4:1–11. https://doi.org/10.1002/solr.202000226 | es_ES |
dc.description.references | Zhang Q, Zhu W, Chen D et al (2019) Light processing enables efficient carbon-based, all-inorganic planar CsPbIBr 2 solar cells with high photovoltages. ACS Appl Mater Interfaces 11:2997–3005. https://doi.org/10.1021/acsami.8b17839 | es_ES |
dc.description.references | Pan J, Zhang X, Zheng Y, Xiang W (2021) Morphology control of perovskite film for efficient CsPbIBr 2 based inorganic perovskite solar cells. Sol Energy Mater Sol Cells 221:110878. https://doi.org/10.1016/j.solmat.2020.110878 | es_ES |
dc.description.references | Zhang B, Bi W, Wu Y et al (2019) High-performance cspbibr2 perovskite solar cells: effectively promoted crystal growth by antisolvent and organic ion strategies. ACS Appl Mater Interfaces 11:33868–33878. https://doi.org/10.1021/acsami.9b09171 | es_ES |
dc.description.references | Zhu W, Zhang Z, Chai W et al (2019) Band alignment engineering towards high efficiency carbon-based inorganic planar CsPbIBr 2 Perovskite solar cells. Chemsuschem 12:2318–2325. https://doi.org/10.1002/cssc.201900611 | es_ES |
dc.description.references | Zhu W, Zhang Q, Zhang C et al (2018) Aged precursor solution toward low-temperature fabrication of efficient carbon-based all-inorganic planar CsPbIBr 2 Perovskite solar cells. ACS Appl Energy Mater 1:4991–4997. https://doi.org/10.1021/acsaem.8b00972 | es_ES |
dc.description.references | Stewart AW, Bouich A, Marí B (2021) Inorganic perovskites improved film and crystal quality of CsPbIBr 2 when doped with rubidium. J Mater Sci Mater Electron 1–9. https://doi.org/10.1007/s10854-021-06941-z | es_ES |
dc.description.references | Zhang W, Zhang Z, Jiang Q et al (2020) Charge-transporting-layer-free, all-inorganic CsPbIBr2 Perovskite solar cells via dipoles-adjusted interface. Nanomaterials (Basel) 10:1–10. https://doi.org/10.3390/nano10071324 | es_ES |
dc.description.references | Li W, Rothmann MU, Liu A et al (2017) Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 Solar cells. Adv Energy Mater 7:1–8. https://doi.org/10.1002/aenm.201700946 | es_ES |
dc.description.references | Xiao M, Huang F, Huang W et al (2014) A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chemie 126:10056–10061. https://doi.org/10.1002/ange.201405334 | es_ES |
dc.description.references | Shi D, Adinolfi V, Comin R et al (2015) Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science (80- ) 347:519–522. https://doi.org/10.1126/science.aaa2725 | es_ES |
dc.description.references | Paek S, Schouwink P, Athanasopoulou EN et al (2017) From nano- to micrometer scale: the role of antisolvent treatment on high performance Perovskite solar cells. Chem Mater 29:3490–3498. https://doi.org/10.1021/acs.chemmater.6b05353 | es_ES |
dc.description.references | Chen W, Chen H, Xu G et al (2019) Precise control of crystal growth for highly efficient CsPbI2Br Perovskite solar cells. Joule 3:191–204. https://doi.org/10.1016/j.joule.2018.10.011 | es_ES |
dc.description.references | Liu X, Li J, Liu Z et al (2020) Vapor-assisted deposition of CsPbIBr 2 films for highly efficient and stable carbon-based planar perovskite solar cells with superior Voc. Electrochim Acta 330:135266. https://doi.org/10.1016/j.electacta.2019.135266 | es_ES |
dc.description.references | Liu C, Li W, Chen J et al (2017) Ultra-thin MoOx as cathode buffer layer for the improvement of all-inorganic CsPbIBr 2 perovskite solar cells. Nano Energy 41:75–83. https://doi.org/10.1016/j.nanoen.2017.08.048 | es_ES |
dc.description.references | Guo Y, Yin X, Liu J et al (2019) Inorganic CsPbIBr 2-based perovskite solar cells: fabrication technique modification and efficiency improvement. Sol RRL 3:1–13. https://doi.org/10.1002/solr.201900135 | es_ES |
dc.description.references | Eperon GE, Paternò GM, Sutton RJ et al (2015) Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A 3:19688–19695. https://doi.org/10.1039/c5ta06398a | es_ES |
dc.description.references | Hoke ET, Slotcavage DJ, Dohner ER et al (2015) Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem Sci 6:613–617. https://doi.org/10.1039/c4sc03141e | es_ES |
dc.description.references | Bush KA, Frohna K, Prasanna R et al (2018) Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett 3:428–435. https://doi.org/10.1021/acsenergylett.7b01255 | es_ES |
dc.description.references | Chen Z, Bobbert PA. Unified theory for light-induced halide segregation in mixed halide perovskites. Nat Commun, pp 1–10. https://doi.org/10.1038/s41467-021-23008-z | es_ES |
dc.description.references | Beal RE, Slotcavage DJ, Leijtens T et al (2016) Cesium lead Halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett 7:746–751. https://doi.org/10.1021/acs.jpclett.6b00002 | es_ES |
dc.description.references | Sutton RJ, Eperon GE, Miranda L et al (2016) Bandgap-tunable cesium lead Halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater 6:1–6. https://doi.org/10.1002/aenm.201502458 | es_ES |
dc.description.references | Burgelman M, Nollet P, Degrave S (2000) Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361:527–532. https://doi.org/10.1016/S0040-6090(99)00825-1 | es_ES |
dc.description.references | Kim BW, Heo JH, Park JK et al (2021) Morphology controlled nanocrystalline CsPbBr 3 thin-film for metal halide perovskite light emitting diodes. J Ind Eng Chem 97:417–425. https://doi.org/10.1016/j.jiec.2021.02.028 | es_ES |