- -

Intensified microwave-assisted heterogeneous catalytic reactors for sustainable chemical manufacturing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Intensified microwave-assisted heterogeneous catalytic reactors for sustainable chemical manufacturing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chen, Weiqi es_ES
dc.contributor.author Malhotra, Abhinav es_ES
dc.contributor.author Yu, Kewei es_ES
dc.contributor.author Zheng, Weiqing es_ES
dc.contributor.author Plaza González, Pedro José es_ES
dc.contributor.author Catalá Civera, José Manuel es_ES
dc.contributor.author Santamaría, Jesús es_ES
dc.contributor.author Vlachos, Dionisios G. es_ES
dc.date.accessioned 2022-06-09T18:06:52Z
dc.date.available 2022-06-09T18:06:52Z
dc.date.issued 2021-09-15 es_ES
dc.identifier.issn 1385-8947 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183158
dc.description.abstract [EN] Microwave-assisted catalysis is an emerging route for reactor modularization and decarbonization of chemical manufacturing with energy-intensive reactions. While laboratory-scale microwave-assisted heterogeneous catalytic reactors are being developed, hot spots and reactor stability under increased catalyst inventory remain impediments for high throughput processing. Here, we engineer the electromagnetic field-material interactions by introducing a packed monolith configuration, consisting of a microwave absorbing monolith filled with catalytic pellets. Electromagnetic simulations reveal the crucial role of monolith electrical conductivity in diminishing the local power dissipation between the pellets' contact points by absorbing the heat directly. Compared to traditional fixed beds, where hot spots form within minutes of operation, and catalyst-coated monoliths, whose active catalyst loading is limited, the proposed system is stable at all tested temperatures up to 900 C and has a catalyst packing density near that of fixed beds. We demonstrate its versatility first on the ethane dehydrogenation to produce ethylene over a Ga2O3/Al2O3 catalyst. Repeatable performance over multiple cycles of reaction and regeneration highlights long-term operation. Second, the dry reforming of methane (CH4) is carried out over a commercial Rh/Al2O3 catalyst, achieving a high (-86%) CH4 conversion with an order of magnitude higher H2 throughput (-85 m3/kg/hr) than previous laboratory-scale reactors. By enhancing the catalyst inventory, packed monoliths create a potential avenue for broader adoption of microwave-assisted heterogeneous catalytic reactors. es_ES
dc.description.sponsorship This work was supported by the Department of Energy's Office of Energy Efficiency and Renewable Energy Advanced Manufacturing Office under Award Number DEEE00078888.3. The authors gratefully acknowledge Keiji Adachi from Ibiden USA for providing the SiC monolith sample and Jaynell Keely for assistance with graphics. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemical Engineering Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Microwave-assisted catalysis es_ES
dc.subject Natural gas es_ES
dc.subject Packed monolith es_ES
dc.subject Sustainable manufacturing es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Intensified microwave-assisted heterogeneous catalytic reactors for sustainable chemical manufacturing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cej.2021.130476 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DEEE00078888.3/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Chen, W.; Malhotra, A.; Yu, K.; Zheng, W.; Plaza González, PJ.; Catalá Civera, JM.; Santamaría, J.... (2021). Intensified microwave-assisted heterogeneous catalytic reactors for sustainable chemical manufacturing. Chemical Engineering Journal. 420:1-10. https://doi.org/10.1016/j.cej.2021.130476 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cej.2021.130476 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 420 es_ES
dc.relation.pasarela S\462704 es_ES
dc.contributor.funder U.S. Department of Energy es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem