- -

Combining Embeddings of Input Data for Text Classification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Combining Embeddings of Input Data for Text Classification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parcheta, Zuzanna es_ES
dc.contributor.author Sanchis Trilles, Germán es_ES
dc.contributor.author Casacuberta Nolla, Francisco es_ES
dc.contributor.author Rendahl, Robin es_ES
dc.date.accessioned 2022-06-16T18:05:48Z
dc.date.available 2022-06-16T18:05:48Z
dc.date.issued 2021-10 es_ES
dc.identifier.issn 1370-4621 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183409
dc.description.abstract [EN] The problem of automatic text classification is an essential part of text analysis. The improvement of text classification can be done at different levels such as a preprocessing step, network implementation, etc. In this paper, we focus on how the combination of different methods of text encoding may affect classification accuracy. To do this, we implemented a multi-input neural network that is able to encode input text using several text encoding techniques such as BERT, neural embedding layer, GloVe, skip-thoughts and ParagraphVector. The text can be represented at different levels of tokenised input text such as the sentence level, word level, byte pair encoding level and character level. Experiments were conducted on seven datasets from different language families: English, German, Swedish and Czech. Some of those languages contain agglutinations and grammatical cases. Two out of seven datasets originated from real commercial scenarios: (1) classifying ingredients into their corresponding classes by means of a corpus provided by Northfork; and (2) classifying texts according to the English level of their corresponding writers by means of a corpus provided by ProvenWord. The developed architecture achieves an improvement with different combinations of text encoding techniques depending on the different characteristics of the datasets. Once the best combination of embeddings at different levels was determined, different architectures of multi-input neural networks were compared. The results obtained with the best embedding combination and best neural network architecture were compared with state-of-the-art approaches. The results obtained with the dataset used in the experiments were better than the state-of-the-art baselines. es_ES
dc.description.sponsorship This work is partially supported by MINECO under Grant DI-15-08169 and by Sciling under its R+D program. The authors would like to thank NVIDIA for their donation of a Titan Xp GPU, which allowed us to conduct this research es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Neural Processing Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Text classification es_ES
dc.subject Multi-input network es_ES
dc.subject Agglutinative language es_ES
dc.subject Inflected language es_ES
dc.subject Embedding combination es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Combining Embeddings of Input Data for Text Classification es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11063-020-10312-w es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DI-15-08169/ES/DI-15-08169/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Parcheta, Z.; Sanchis Trilles, G.; Casacuberta Nolla, F.; Rendahl, R. (2021). Combining Embeddings of Input Data for Text Classification. Neural Processing Letters. 53(5):3123-3151. https://doi.org/10.1007/s11063-020-10312-w es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11063-020-10312-w es_ES
dc.description.upvformatpinicio 3123 es_ES
dc.description.upvformatpfin 3151 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\417680 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abadi M, Barham P, Chen J, Chen Z et al (2016) Tensorflow: a system for large-scale machine learning. In: Proceedings of 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp 265–283 es_ES
dc.description.references Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: Proceedings of workshop at the international conference on learning representations (ICLR) es_ES
dc.description.references Bergsma S, Kondrak G (2007) Alignment-based discriminative string similarity. In: Proceedings of the 45th annual meeting of the association of computational linguistics, pp 656–663 es_ES
dc.description.references Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information. Trans Assoc Comput Linguist 5:135–146 es_ES
dc.description.references Bridle JS (1989) Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Fogelman Soulié F, Hérault J (eds) Neurocomputing. Springer, Berlin, Heidelberg, pp 227–236 es_ES
dc.description.references Chen D, Manning CD (2014) A fast and accurate dependency parser using neural networks. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 740–750 es_ES
dc.description.references Chollet F (2016) Using pre-trained word embeddings in a keras model. The Keras Blog, London es_ES
dc.description.references Chollet F, Falbel D, Allaire J, Tang YT, Van Der Bijl W, Studer M, Keydana S (2015) Keras: deep learning library for theano and tensorflow, vols 7, 8. https://keras.io/k es_ES
dc.description.references Conneau A, Kiela D, Schwenk H, Barrault L, Bordes A (2017) Supervised learning of universal sentence representations from natural language inference data. In: Proceedings of the 2017 conference on empirical methods in natural language processing, pp 670–680 es_ES
dc.description.references Dai AM, Olah C, Le QV (2015) Document embedding with paragraph vectors. Preprint arXiv:1507.07998v1 es_ES
dc.description.references Devlin J, Chang M, Lee K, Toutanova K (2018) BERT: pre-training of deep bidirectional transformers for language understanding. Preprint arXiv:1810.04805 es_ES
dc.description.references Gage P (1994) A new algorithm for data compression. C Users J 12:23–38 es_ES
dc.description.references Goasduff L, Omale G (2018) Gartner survey finds consumers would use AI to save time and money. Gartner, Berlin es_ES
dc.description.references Gupta V, Karnick H, Bansal A, Jhala P (2016) Product classification in e-commerce using distributional semantics. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp 536–546 es_ES
dc.description.references Habernal I, Brychcín T (2013) Unsupervised improving of sentiment analysis using global target context. Proc Recent Adv Nat Lang Process 2013:122–128 es_ES
dc.description.references Hill F, Cho K, Korhonen A (2016) Learning distributed representations of sentences from unlabelled data. In:Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 1367–1377 es_ES
dc.description.references Hövelmann L, Allee S, Friedrich CM (2017) Fasttext and gradient boosted trees at Germeval-2017 on relevance classification and document-level polarity. In: Shared task on aspect-based sentiment in social media customer feedback, pp 30–35 es_ES
dc.description.references Ionescu RT, Butnaru A (2019) Vector of locally-aggregated word embeddings (VLAWE): a novel document-level representation. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), pp 363–369 es_ES
dc.description.references Jain G, Sharma M, Agarwal B (2019) Spam detection in social media using convolutional and long short term memory neural network. Ann Math Artif Intell 85(1):21–44 es_ES
dc.description.references Jauhiainen TS, Lui M, Zampieri M, Baldwin T, Lindén K (2019) Automatic language identification in texts: a survey. J Artif Intell Res 65:675–782 es_ES
dc.description.references Joulin A, Grave E, Bojanowski P, Mikolov T (2017) Bag of tricks for efficient text classification. In: Proceedings of conference of the European chapter of the association for computational linguistics (ACL), vol 2, pp 427–431 es_ES
dc.description.references Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. Preprint arXiv:1412.6980 es_ES
dc.description.references Kiros R, Zhu Y, Salakhutdinov R, Zemel RS, Torralba A, Urtasun R, Fidler S (2015) Skip-thought vectors. Preprint arXiv:1506.06726 es_ES
dc.description.references Koehn P (2004) Statistical significance tests for machine translation evaluation. In: Proceedings of the 2004 conference on empirical methods on natural language processing, pp 388–395 es_ES
dc.description.references Parcheta Z, Sanchis-Trilles G, Casacuberta F, Redahl R (2019) Multi-input CNN for text classification in commercial scenarios. In: Proceedings of the international work-conference on artificial neural networks. Springer, Berlin, pp 596–608 es_ES
dc.description.references Pennington J, Socher R, Manning C (2014) Glove: global vectors for word representation. In: Proceedings of the conference on empirical methods in natural language processing (EMNLP), pp 1532–1543 es_ES
dc.description.references Sadr H, Pedram MM, Teshnehlab M (2019) A robust sentiment analysis method based on sequential combination of convolutional and recursive neural networks. Neural Process Lett 50(3):2745–2761 es_ES
dc.description.references Sayyed ZA, Dakota D, Kübler S (2017) IDS IUCL: investigating feature selection and oversampling for GermEval2017. Shared task on aspect-based sentiment in social media customer feedback, pp 43–48 es_ES
dc.description.references Sennrich R, Haddow B, Birch A (2016) Neural machine translation of rare words with subword units. In: Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies (NAACL HLT), vol 1, pp 1715–1725 es_ES
dc.description.references Socher R, Perelygin A, Wu J, Chuang J, Manning CD, Ng AY, Potts C (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 conference on empirical methods in natural language processing, pp 1631–1642 es_ES
dc.description.references Stein RA, Jaques PA, Valiati JF (2018) An analysis of hierarchical text classification using word embeddings. Preprint arXiv:1809.01771 es_ES
dc.description.references Strange W, Bohn OS, Nishi K, Trent SA (2005) Contextual variation in the acoustic and perceptual similarity of North German and American English vowels. J Acoust Soc Am 118(3):1751–1762 es_ES
dc.description.references Strange W, Bohn OS, Trent SA, Nishi K (2004) Acoustic and perceptual similarity of North German and American English vowels. J Acoust Soc Am 115(4):1791–1807 es_ES
dc.description.references Tiwary A (2017) Time is money and artificial intelligence can save you time. Digital CMO, London es_ES
dc.description.references Vaswani A, Bengio S, Brevdo E, Chollet F, Gomez AN, Gouws S, Jones L, Kaiser L, Kalchbrenner N, Parmar N, Sepassi R, Shazeer N, Uszkoreit J (2018) Tensor2tensor for neural machine translation. Preprint arXiv:1803.07416 es_ES
dc.description.references Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008 es_ES
dc.description.references Wojatzki M, Ruppert E, Holschneider S, Zesch T, Biemann C (2017) Germeval 2017: shared task on aspect-based sentiment in social media customer feedback. In: Shared task on aspect-based sentiment in social media customer feedback, pp 1–12 es_ES
dc.description.references Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional network. Preprint arXiv:1505.00853 es_ES
dc.description.references Xu J, Zhang C, Zhang P, Song D (2018) Text classification with enriched word features. In: Proceedings of the 16th Pacific RIM international conference on artificial intelligence (PRICAI). Springer, Berlin, pp 274–281 es_ES
dc.description.references Zhang L, Wang S, Liu B (2018) Deep learning for sentiment analysis: a survey. Wiley Interdiscip Rev Data Min Knowl Discov 8(4):e1253 es_ES
dc.description.references Zhang X, LeCun Y (2015) Text understanding from scratch. Preprint arXiv:1502.01710 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem