- -

Improved rainfall and temperature satellite dataset in areas with scarce weather stations data: case study in Ancash, Peru

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improved rainfall and temperature satellite dataset in areas with scarce weather stations data: case study in Ancash, Peru

Mostrar el registro completo del ítem

Villavicencio, EE.; Medina, KD.; Loarte, EA.; León, HA. (2022). Improved rainfall and temperature satellite dataset in areas with scarce weather stations data: case study in Ancash, Peru. Revista de Teledetección. (60):17-28. https://doi.org/10.4995/raet.2022.16907

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/185804

Ficheros en el ítem

Metadatos del ítem

Título: Improved rainfall and temperature satellite dataset in areas with scarce weather stations data: case study in Ancash, Peru
Otro titulo: Mejora de los datos satelitales de precipitación y temperatura en áreas con baja disponibilidad de estaciones meteorológicas: caso de estudio en Ancash, Perú
Autor: Villavicencio, Eduardo E. Medina, Katy D. Loarte, Edwin A. León, Hairo A.
Fecha difusión:
Resumen:
[EN] Rainfall and temperature variables play an important role in understanding meteorology at global and regional scales. However, the availability of meteorological information in areas of complex topography is difficult, ...[+]


[ES] Las variables de precipitación y temperatura desempeñan un papel importante en la comprensión de la meteorología a escala global y regional. Sin embargo, disponer de información meteorológica en zonas de topografía ...[+]
Palabras clave: TRMM , GPM , MERRA-2 , Weather stations , Ancash , Estaciones meteorológicas
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista de Teledetección. (issn: 1133-0953 ) (eissn: 1988-8740 )
DOI: 10.4995/raet.2022.16907
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/raet.2022.16907
Código del Proyecto:
info:eu-repo/grantAgreement/CONCYTEC//8682-PE/Improvement and Expansion of the National Science Technology and Technological Innovation System Services
info:eu-repo/grantAgreement/FONDECYT//E031-2018-01
Agradecimientos:
The authors acknowledge the financial support from the CONCYTEC - World Bank Project “Improvement and Expansion of the National Science Technology and Technological Innovation System Services”; 8682-PE, through its executing ...[+]
Tipo: Artículo

Localización


 

References

Aybar, C., Lavado, W., Huerta, A., Fernández, C., Vega, F., Sabino, E., Felipe, O. 2017. Uso del Producto Grillado "PISCO" de precipitación en Estudios, Investigaciones y Sistemas Operacionales de Monitoreo y Pronóstico Hidrometeorológico. In Nota Técnica 001 SENAMHI-DHI-2017 (pp. 1-22). SENAMHI.

Aybar, C., Fernández, C., Huerta, A., Lavado, W., Vega, F., Felipe-Obando, O. 2019. Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrological Sciences Journal, 65(5), 770-785. https://doi.org/10.1080/02626667.2019.1649411

Benali, A., Carvalho, A.C., Nunes, J.P., Carvalhais, N., Santos, A. 2012. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sensing of Environment, 124, 108-121. https://doi.org/10.1016/j.rse.2012.04.024 [+]
Aybar, C., Lavado, W., Huerta, A., Fernández, C., Vega, F., Sabino, E., Felipe, O. 2017. Uso del Producto Grillado "PISCO" de precipitación en Estudios, Investigaciones y Sistemas Operacionales de Monitoreo y Pronóstico Hidrometeorológico. In Nota Técnica 001 SENAMHI-DHI-2017 (pp. 1-22). SENAMHI.

Aybar, C., Fernández, C., Huerta, A., Lavado, W., Vega, F., Felipe-Obando, O. 2019. Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrological Sciences Journal, 65(5), 770-785. https://doi.org/10.1080/02626667.2019.1649411

Benali, A., Carvalho, A.C., Nunes, J.P., Carvalhais, N., Santos, A. 2012. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sensing of Environment, 124, 108-121. https://doi.org/10.1016/j.rse.2012.04.024

Beniston, M., Diaz, H.F., Bradley, R. 1997. Climatic change at high elevation sites: an overview. Climatic Change, 2, 157-167. https://doi.org/10.1007/978-94-015-8905-5_1

Condom, T., Rau, P., Espinoza, J.C. 2011. Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998-2007. Hydrological Processes, 25(12), 1924-1933. https://doi.org/10.1002/hyp.7949

Despotovic, M., Nedic, V., Despotovic, D., Cvetanovic, S. 2016. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renewable and Sustainable Energy Reviews, 56, 246-260. https://doi.org/10.1016/j.rser.2015.11.058

Endara-Huanca, S.M. 2016. Ciclos Horarios De Precipitación En El Perú Utilizando Información Satelital Dirección. In Servicio Nacional de Meteorología e Hidrología. Servicio Nacional de Meteorología e Hidrología. Available at http://repositorio.senamhi.gob.pe/handle/20.500.12542/112

Fernández-Palomino, C.A., Hattermann, F.F., Krysanova, V., Lobanova, A., Vega-Jácome, F., Lavado, W., Santini, W., Aybar, C., Bronstert, A. 2022. A Novel High-Resolution Gridded Precipitation Dataset for Peruvian and Ecuadorian Watersheds: Development and Hydrological Evaluation. Journal of Hydrometeorology, 23(3), 309-336. https://doi.org/10.1175/JHM-D-20-0285.1

Franchito, S.H., Rao, V.B., Vasques, A.C., Santo, C.M.E., Conforte, J.C. 2009. Validation of TRMM precipitation radar monthly rainfall estimates over Brazil. Journal of Geophysical Research Atmospheres, 114. https://doi.org/10.1029/2007JD009580

Fries, A., Rollenbeck, R., Nauß, T., Peters, T., Bendix, J. 2012. Near surface air humidity in a megadiverse Andean mountain ecosystem of southern Ecuador and its regionalization Andreas. Agricultural and Forest Meteorology, 2012, 17-30. https://doi.org/10.1016/j.agrformet.2011.08.004

Garreaud, R., Vuille, M., Clement, A.C. 2003. The climate of the Altiplano: Observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 194(1-3), 5-22. https://doi.org/10.1016/S0031-0182(03)00269-4

Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A.M., Gu, W., … Zhao, B. 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419-5454. https://doi.org/10.1175/JCLI-D-16-0758.1

Georganos, S., Abdi, A.M., Tenenbaum, D.E., & Kalogirou, S. 2017. Examining the NDVIrainfall relationship in the semi-arid Sahel using geographically weighted regression. Journal of Arid Environments, 146, 64-74. https://doi.org/10.1016/j.jaridenv.2017.06.004

Huffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Nelkin, E.J., Bowman, K.P., Hong, Y., Stocker, E.F., & Wolff, D.B. 2007. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38-55. https://doi.org/10.1175/JHM560.1

Krakauer, N.Y., Pradhanang, S.M., Lakhankar, T., Jha, A.K. 2013. Evaluating satellite products for precipitation estimation in mountain regions: A case study for Nepal. Remote Sensing, 5(8), 4107-4123. https://doi.org/10.3390/rs5084107

Lavado-Casimiro, W., Labat, D., Guyot, J.L., Ronchail, J., Ordóñez, J.J. 2009. Validation of rainfall using the TRMM for two Peruvian Amazon basins and its inclusion in monthly water balance models. Revista Peruana Geo-Atmosferica RPGA, 19(1), 11-19.

Liu, C., Zipser, E.J. 2015. The global distribution of largest, deepest, and most intense precipitation systems. Geophysical Research Letters, 42(9), 3591-3595. https://doi.org/10.1002/2015GL063776

Lu, X., Wei, M., Tang, G., Zhang, Y. 2018. Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM satellite precipitation products by use of ground-based data over Xinjiang, China. Environmental Earth Sciences, 77(5). https://doi.org/10.1007/s12665-018-7378-6

Lujano-Laura, E., Felipe-Obando, O.G., Lujano Laura, A., Quispe-Aragón, J. 2015. Validación de la precipitación estimada por satélite TRMM y su aplicación en la modelación hidrológica del río Ramis Puno Perú. Revista Investigaciones Altoandinas - Journal of High Andean Investigation, 17(2), 221. https://doi.org/10.18271/ria.2015.116

McCarty, W., Coy, L., Gelaro, R., Huang, A., Merkova, D., Smith, E.B., Sienkiewicz, M., Wargan, K. 2016. MERRA-2 Input Observations: Summary and Assessment. Technical Report Series on Global Modeling and Data Assimilation 46. 46(October), 51.

Motschmann, A., Huggel, C., Carey, M., Moulton, H., Walker-Crawford, N., Muñoz, R. 2020. Losses and damages connected to glacier retreat in the Cordillera Blanca, Peru. Climatic Change, 162(2), 837-858. https://doi.org/10.1007/s10584-020-02770-x

Mourre, L., Condom, T., Junquas, C., Lebel, T., E. Sicart, J., Figueroa, R., Cochachin, A. 2016. Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in a tropical mountain environment (Cordillera Blanca, Peru). Hydrology and Earth System Sciences, 20(1), 125-141. https://doi.org/10.5194/hess-20-125-2016

Ninyerola, M., Pons, X., Roure, J.M. 2000. A methodological approach of climatological modeling of air temperature and precipitation. International Journal of Climatology, 20, 1823-1841. https://doi.org/10.1002/1097-0088(20001130)20:14<1823::AID-JOC566>3.0.CO;2-B

Ouatiki, H., Boudhar, A., Tramblay, Y., Jarlan, L., Benabdelouhab, T., Hanich, L., El Meslouhi, M., Chehbouni, A. 2017. Evaluation of TRMM 3B42 V7 Rainfall Product over the Oum Er Rbia Watershed in Morocco. Climate, 5(1), 1. https://doi.org/10.3390/cli5010001

Quevedo, K., Sánchez, K. 2009. Comparación de dos métodos de interpolación para la estimación de la temperatura del aire aplicando técnicas geoestadísticas. Revista Peruana Geo-Atmosferica, 107(1), 90-107.

Rau, P., Condom, T. 2010. Análisis espacio temporal de la precipitación en las zonas de montaña de Peru (1998-2007). Revista Peruana Geo Atmosférica, 29(2), 16-29.

Ritter, A., Muñoz-Carpena, R. 2013. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodnessof-fit assessments. Journal of Hydrology, 480, 33-45. https://doi.org/10.1016/j.jhydrol.2012.12.004

Vicente-Serrano, S.M., López-Moreno, J.I., Correa, K., Avalos, G., Bazo, J., Azorin-Molina, C., Domínguez-Castro, F., Kenawy, E., Gimeno, L., Nieto, R. 2017. Recent changes in monthly surface air temperature over Peru, 1964-2014. International Journal of Climatology, 38(1), 283-306. https://doi.org/10.1002/joc.5176

Zhang, X., Feng, Y., & Chan, R. 2018. Introduction to RClimDex. Climate Research Division Environment Canada, 1-26.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem