- -

The ABCF3 Gene of Arabidopsis Is Functionally Linked with GCN1 but Not with GCN2 During Stress and Development

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The ABCF3 Gene of Arabidopsis Is Functionally Linked with GCN1 but Not with GCN2 During Stress and Development

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Faus, I. es_ES
dc.contributor.author Niñoles Rodenes, Regina es_ES
dc.contributor.author Kesari, V. es_ES
dc.contributor.author Gadea Vacas, José es_ES
dc.date.accessioned 2022-09-30T18:06:57Z
dc.date.available 2022-09-30T18:06:57Z
dc.date.issued 2021-12 es_ES
dc.identifier.issn 0735-9640 es_ES
dc.identifier.uri http://hdl.handle.net/10251/186793
dc.description.abstract [EN] One of the main mechanisms regulating translation is the one based on the phosphorylation of the alpha subunit of the translation initiation factor 2 (eIF2 alpha) by the general control non-repressive 2 (GCN2) protein kinase. In yeast, this kinase binds to two scaffold proteins (GCN1 and GCN20), facilitating its activation on translating ribosomes. The homology of the three proteins exists in Arabidopsis. In this species, whereas the kinase is activated under several stress situations, the involvement of the scaffold proteins in those processes is controversial, and a new role for GCN1 in translation, independent of the phosphorylation of eIF2 alpha, has been proposed. Arabidopsis presents five genes with homology to GCN20 (ABCF1 to 5) in its genome. We show here that any of these five genes is needed for eIF2 alpha phosphorylation. Furthermore, plant phenotypes under abiotic stresses and chloroplast development suggest that ABCF3 is functionally linked with GCN1, but not with GCN2. Finally, gcn1 and abcf3 mutants share similar transcriptional reprogramming, affecting photosynthesis and stress responses. The common downregulation of regulators of the flagellin receptor FLS2 in both mutants suggest that the observed defect in pathogen-associated molecular pattern (PAMP)-induced stomatal closure of these two mutants could be mediated by these proteins. es_ES
dc.description.sponsorship This work was funded by the Spanish Ministerio de Ciencia e Innovacion (MICINN), reference BFU2011-22526. Vigya Kesari thanks the EC for an Erasmus Mundus postdoctoral fellowship. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Plant Molecular Biology Reporter es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Transcriptomic es_ES
dc.subject Chloroplast es_ES
dc.subject Translation,Defense es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title The ABCF3 Gene of Arabidopsis Is Functionally Linked with GCN1 but Not with GCN2 During Stress and Development es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11105-021-01283-w es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2011-22526/ES/NUEVOS MECANISMOS DE TRANSMISION DE SEÑALES DURANTE EL METABOLISMO DE GLUCOSA Y LA ACIDIFICACION INTRACELULAR: AMPLIANDO LAS FUNCIONES DE LA PROTEINA FOSFATASA 1 Y LA PROTEINA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Faus, I.; Niñoles Rodenes, R.; Kesari, V.; Gadea Vacas, J. (2021). The ABCF3 Gene of Arabidopsis Is Functionally Linked with GCN1 but Not with GCN2 During Stress and Development. Plant Molecular Biology Reporter. 39(4):663-672. https://doi.org/10.1007/s11105-021-01283-w es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11105-021-01283-w es_ES
dc.description.upvformatpinicio 663 es_ES
dc.description.upvformatpfin 672 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 39 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\460369 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder MINISTERIO DE ECONOMIA Y EMPRESA es_ES
dc.description.references Browning KS (2004) Plant translation initiation factors: it is not easy to be green. Biochem Soc Trans 32(Pt 4):589–591 es_ES
dc.description.references Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattlegger E (2014) Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta 1843(9):1948–1968 es_ES
dc.description.references Du M, Zhao J, Tzeng DTW, Liu Y, Deng L, Yang T, Zhai Q, Wu F, Huang Z, Zhou M, Wang Q, Chen Q, Zhong S, Li CB, Li C (2017) MYC2 orchestrates a hierarchical transcriptional cascade that regulates Jasmonate-mediated plant immunity in tomato. Plant Cell 29(8):1883–1906 es_ES
dc.description.references Faus Niñoles IR, Kesari V, Llabata P, Tam E, Nebauer SG, Santiago J, Hauser MT, Gadea J (2018) Arabidopsis ILITHYIA protein is necessary for proper chloroplast biogenesis and root development independent of eIF2α phosphorylation. J Plant Physiol 224–225:173–182 es_ES
dc.description.references Faus I, Zabalza A, Santiago J, Nebauer SG, Royuela M, Serrano R, Gadea J (2015) Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis. BMC Plant Biol 15:14 es_ES
dc.description.references Garcia-Barrio M, Dong J, Ufano S, Hinnebusch AG (2000) Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2alpha kinase GCN2 is required for GCN2 activation. EMBO J 19(8):1887–1899 es_ES
dc.description.references Han TT, Liu WC, Lu YT (2018) General control non-repressible 20 (GCN20) functions in root growth by modulating DNA damage repair in Arabidopsis. BMC Plant Biol 18(1):274 es_ES
dc.description.references Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450 es_ES
dc.description.references Hirose T, Horvitz HR (2014) The translational regulators GCN-1 and ABCF-3 act together to promote apoptosis in C. elegans. PLoS Genet 10(8):e1004512 es_ES
dc.description.references Izquierdo Y, Kulasekaran S, Benito P, López B, Marcos R, Cascón T, Hamberg M, Castresana C (2018) Arabidopsis nonresponding to oxylipins locus NOXY7 encodes a yeast GCN1 homolog that mediates noncanonical translation regulation and stress adaptation. Plant Cell Environ 41(6):1438–1452 es_ES
dc.description.references Kazan K, Lyons R (2014) Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26(6):2285–2309 es_ES
dc.description.references Lageix S, Lanet E, Pouch-Pélissier MN, Espagnol MC, Robaglia C, Deragon JM, Pélissier T (2008) Arabidopsis eIF2alpha kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biol 8:134 es_ES
dc.description.references Lellis AD, Allen ML, Aertker AW, Tran JK, Hillis DM, Harbin CR, Caldwell C, Gallie DR, Browning KS (2010) Deletion of the eIFiso4G subunit of the Arabidopsis eIFiso4F translation initiation complex impairs health and viability. Plant Mol Biol 74(3):249–263 es_ES
dc.description.references Li MW, AuYeung WK, Lam HM (2013) The GCN2 homologue in Arabidopsis thaliana interacts with uncharged tRNA and uses Arabidopsis eIF2α molecules as direct substrates. Plant Biology (Stuttgart) 15(1):13–18 es_ES
dc.description.references Lintala M, Lehtimäki N, Benz JP, Jungfer A, Soll J, Aro EM, Bölter B, Mulo P (2012) Depletion of leaf-type ferredoxin-NADP(+) oxidoreductase results in the permanent induction of photoprotective mechanisms in Arabidopsis chloroplasts. Plant J 70(5):809–817 es_ES
dc.description.references Marton MJ, Crouch D, Hinnebusch AG (1993) GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Mol Cell Biol 13(6):3541–3556 es_ES
dc.description.references Marton MJ, deAldana CRV, Qiu HF, Chakraburtty K, Hinnebusch AG (1997) Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2 alpha kinase GCN2. Mol Cell Biol 17(8):4474–4489 es_ES
dc.description.references Mayberry LK, Allen ML, Dennis MD, Browning KS (2009) Evidence for variation in the optimal translation initiation complex: plant eIF4B, eIF4F, and eIF(iso)4F differentially promote translation of mRNAs. Plant Physiol 150(4):1844–1854 es_ES
dc.description.references Mishra P, Bhoomika K, Dubey RS (2013) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250(1):3–19 es_ES
dc.description.references Monaghan J, Li X (2010) The HEAT repeat protein ILITYHIA is required for plant immunity. Plant Cell Physiol 51(5):742–753 es_ES
dc.description.references Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99(6):1161–1173 es_ES
dc.description.references Muñoz A, Castellano MM (2012) Regulation of translation initiation under abiotic stress conditions in plants: is it a conserved or not so conserved process among Eukaryotes? Comp Funct Genomics 2012:406357 es_ES
dc.description.references Sánchez-Fernández R, Davies TG, Coleman JO, Rea PA (2001) The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem 276(32):30231–30244 es_ES
dc.description.references Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6(7):e21800 es_ES
dc.description.references Tateda C, Zhang Z, Greenberg JT (2015) Linking pattern recognition and salicylic acid responses in Arabidopsis through accelerated cell death6 and receptors. Plant Signal Behav 10(10):e1010912 es_ES
dc.description.references Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) AgriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45(W1):W122–W129. https://doi.org/10.1093/nar/gkx382 es_ES
dc.description.references Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98(9):5116–5121 es_ES
dc.description.references Yeh YH, Chang YH, Huang PY, Huang JB, Zimmerli L (2015) Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases. Front Plant Sci 6:322 es_ES
dc.description.references Wang L, Li H, Zhao C, Li S, Kong L, Wu W, Kong W, Liu Y, Wei Y, Zhu JK, Zhang H (2016) The inhibition of protein translation mediated by AtGCN1 is essential for cold tolerance in Arabidopsis thaliana. Plant Cell Environ 40(1):56–68 es_ES
dc.description.references Zeng W, Brutus A, Kremer JM, Withers JC, Gao X, Jones AD, He SY (2011) A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000. PLoS Pathogens 7(10) es_ES
dc.description.references Zeng W, Melotto M, He SY (2010) Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr Opin Biotechnol 21(5):599–603. https://doi.org/10.1016/j.copbio.2010.05.006 (Epub 2010 Jun 21) es_ES
dc.description.references Zhang Y, Dickinson JR, Paul MJ, Halford NG (2003) Molecular cloning of an Arabidopsis homologue of GCN2, a protein kinase involved in co-ordinated response to amino acid starvation. Planta 217(4):668–675 es_ES
dc.description.references Zhang Y, Wang Y, Kanyuka K, Parry MA, Powers SJ, Halford NG (2008) GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2alpha in Arabidopsis. J Exp Bot 59(11):3131–3141 es_ES
dc.description.references Zhang Z, Shrestha J, Tateda C, Greenberg JT (2014) Salicylic acid signaling controls the maturation and localization of the Arabidopsis defense protein accelerated cell death6. Mol Plant 7(8):1365–1383 es_ES
dc.description.references Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF et al (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11(6):587–596. https://doi.org/10.1016/j.chom.2012.04.014 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem