- -

Control no-híbrido de glucemia ensayado en pacientes ambulatorios con Diabetes Tipo 1

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control no-híbrido de glucemia ensayado en pacientes ambulatorios con Diabetes Tipo 1

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garelli, Fabricio es_ES
dc.contributor.author Fushimi, Emilia es_ES
dc.contributor.author Rosales, Nicolás es_ES
dc.contributor.author Arambarri, Delfina es_ES
dc.contributor.author Serafini, María Cecilia es_ES
dc.contributor.author De Battista, Hernán es_ES
dc.contributor.author Grosembacher, Luis A. es_ES
dc.contributor.author Sánchez-Peña, Ricardo S. es_ES
dc.date.accessioned 2022-10-05T07:31:48Z
dc.date.available 2022-10-05T07:31:48Z
dc.date.issued 2022-06-29
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/187019
dc.description.abstract [EN] In this work, we present the experience of our research group with the glucose regulation in people with Type 1 Diabetes (insulin-dependent), known as artificial pancreas. Our research group has carried out three clinical trials in Argentina, which were the first ones in Latin America. The first two studies took place in 2016 and 2017, both in the Hospital Italiano de Buenos Aires (HIBA) with five adult subjects and a duration of 36 hours. The second trial evaluated the performance of a novel closed-loop controlalgorithm (without meal insulin boluses), called ARG Automatic Regulation of Glucose) and based on switched LQG control and a safety layer called SAFE (Safery Auxiliary Feedback Element), developed by researchers of our team. More recently and during COVID-19 pandemic, the first ambulatory trials took place, which were carried out in 2021 in a hotel with 5 subjects during 6 days. Additionally, for this third trial, the use of the artificial pancreas platform developed by the UNLP, called InsuMate, was incorporated. This platform connects a smartphone with the insulin pump and glucose monitor, houses the control algorithm, andallows the remote monitoring of multiple users. The results suggest that the ambulatory use of the ARG algorithm is feasible, safe and effective, compared to the usual reatment. In addition, the InsuMate platform was intuitive and easy to use for both healthcare staff and participants of the trial, achieving an over 95% of time in closed-loop. es_ES
dc.description.abstract [ES] En este trabajo se presenta la experiencia argentina en el problema de regulación de los niveles de glucosa en sangre para pacientes con Diabetes Mellitus Tipo 1 (insulino-dependientes), denominado Páncreas Artificial. El grupo de trabajo ha realizado 3 pruebas clínicas, las primeras en Latinoamérica. Las dos primeras fueron concretadas en 2016 y 2017, ambas en el Hospital Italiano con 5 pacientes adultos durante 36 hs. En la segunda de ellas se utilizó un nuevo algoritmo de control de lazo cerrado puro (sin bolo prandial), llamado ARG (Automatic Regulation of Glucose) y basado en un control LQG conmutado en combinación con la capa de seguridad SAFE (Safety Auxiliary Feedback Element), desarrollado por investigadores de nuestro equipo. Este año se llevó a cabo la primera prueba ambulatoria, realizada en un hotel con 5 pacientes durante 6 días en marzo de 2021. En esta tercera prueba además, se utilizó una plataforma desarrollada por la Universidad Nacional de La Plata (UNLP), denominada InsuMate. Ésta conecta el celular con la bomba de insulina y el monitor de glucosa, aloja el algoritmo de control y permite el monitoreo remoto de múltiples pacientes. Los resultados obtenidos sugieren que el uso del algoritmo ARG en forma ambulatoria es factible, seguro y eficaz en comparación con la terapia usual. Asimismo, la plataforma InsuMate resultó ser intuitiva y sencilla para los usuarios, tanto médicos como pacientes participantes del ensayo, logrando un tiempo de funcionamiento del lazo cerrado superior al 95 %.  es_ES
dc.description.sponsorship Este trabajo ha sido realizado parcialmente gracias al apoyo de las Fundaciones Cellex (España) y Nuria (Argentina), y el financiamiento de los proyectos PICT2017-3211, PICT2019-2554, UNLP/I253, CONICET/PIP2595 y COVID Federal BS AS 28 del gobierno argentino. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Artificial pancreas es_ES
dc.subject Clinical trials es_ES
dc.subject Switched control es_ES
dc.subject Páncreas artificial es_ES
dc.subject Ensayos clínicos es_ES
dc.subject Control conmutado es_ES
dc.title Control no-híbrido de glucemia ensayado en pacientes ambulatorios con Diabetes Tipo 1 es_ES
dc.title.alternative Non-hybrid glycemic control of type 1 diabetes ambulatory patients es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.16652
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Garelli, F.; Fushimi, E.; Rosales, N.; Arambarri, D.; Serafini, MC.; De Battista, H.; Grosembacher, LA.... (2022). Control no-híbrido de glucemia ensayado en pacientes ambulatorios con Diabetes Tipo 1. Revista Iberoamericana de Automática e Informática industrial. 19(3):318-329. https://doi.org/10.4995/riai.2022.16652 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.16652 es_ES
dc.description.upvformatpinicio 318 es_ES
dc.description.upvformatpfin 329 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\16652 es_ES
dc.contributor.funder Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina es_ES
dc.contributor.funder Universidad Nacional de La Plata, Argentina es_ES
dc.contributor.funder Fundación Cellex es_ES
dc.contributor.funder Ministerio de Ciencia, Tecnología e Innovación Productiva, Argentina es_ES
dc.contributor.funder Fundación Nuria es_ES
dc.description.references Bergenstal, R., Garg, S., Weinzimer, S., et al., 2016. Safety of a hybrid closed-loop insulin delivery system in patients with type 1 diabetes. JAMA 13 (316), 1407-1408. https://doi.org/10.1001/jama.2016.11708 es_ES
dc.description.references Cameron, F. M., Ly, T. T., Buckingham, B. A., Maahs, D. M., Forlenza, G. P., Levy, C. J., Lam, D., Clinton, P., Messer, L. H., Westfall, E., Levister, C., Xie, Y. Y., Baysal, N., Howsmon, D., Patek, S. D., Bequette, B. W., Sep.2017. Closed-loop control without meal announcement in type 1 diabetes. Diabetes technology & therapeutics 19 (9), 527-532. https://doi.org/10.1089/dia.2017.0078 es_ES
dc.description.references Castellanos, L. E., Balliro, C. A., Sherwood, J. S., Jafri, R., Hillard, M. A., Greaux, E., Selagamsetty, R., Zheng, H., El-Khatib, F. H., Damiano, E. R., Russell, S. J., Jun. 2021. Performance of the insulin-only ilet bionic pancreas and the bihormonal ilet using dasiglucagon in adults with type 1 diabetes in a home-use setting. Diabetes Care 44 (6), e118. https://doi.org/10.2337/dc20-1086 es_ES
dc.description.references Colmegna, P., Bianchi, F., Sánchez-Peña, R., 2021. Automatic glucose controlduring meals and exercise in type 1 diabetes: Proof-of-concept in silico testsusing a switched LPV approach. IEEE Control System Letters 5 (5), 1489-94. https://doi.org/10.1109/LCSYS.2020.3041211 es_ES
dc.description.references Colmegna, P., Garelli, F., De Battista, H., Sánchez-Peña, R., 2018. Automaticregulatory control in type 1 diabetes without carbohydrate counting. ControlEng Pract, 22-32. https://doi.org/10.1016/j.conengprac.2018.02.003 es_ES
dc.description.references Colmegna, P., Sánchez-Peña, R., Gondhalekar, R., Dassau, E., Doyle III, F.,March 2016a. Reducing glucose variability due to meals and postprandialexercise in T1DM using switched LPV control: In silico studies. J. DiabetesSci. Technol. 10 (3), 744-753. https://doi.org/10.1177/1932296816638857 es_ES
dc.description.references Colmegna, P., Sánchez-Peña, R. S., Gondhalekar, R., Dassau, E., J. Doyle III, F.,June 2016b. Switched LPV glucose control in type 1 diabetes. IEEE TransBiomed Eng 63 (6), 1192-1200. https://doi.org/10.1109/TBME.2015.2487043 es_ES
dc.description.references Colmegna, P., Sánchez-Peña, R. S., Gondhalekar, R., Dassau, E., Doyle III,F. J., June 2016c. Switched LPV glucose control in type 1 diabetes. IEEETrans. Biomed. Eng. 63 (6), 1192-1200. https://doi.org/10.1109/TBME.2015.2487043 es_ES
dc.description.references Dalla Man, C., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., Cobelli, C., Jan. 2014. The uva/padova type 1 diabetes simulator: New features. J Diabetes Sci Technol 8 (1), 26-34. https://doi.org/10.1177/1932296813514502 es_ES
dc.description.references Dassau, E., Bequette, B. W., Buckingham, B., Doyle III, F. J., Feb 2008. Detec-tion of a meal using continuous glucose monitoring. Diabetes Care 31 (2),295-300. https://doi.org/10.2337/dc07-1293 es_ES
dc.description.references Forlenza, G. P., Cameron, F. M., Ly, T. T., Lam, D., Howsmon, D. P., Baysal, N., Kulina, G., Messer, L., Clinton, P., Levister, C., Patek, S. D., Levy, C. J., Wadwa, R. P., Maahs, D. M., Bequette, B. W., Buckingham, B. A., May 2018. Fully closed-loop multiple model probabilistic predictive controller artificial pancreas performance in adolescents and adults in a supervised hotel setting. Diabetes Technology & Therapeutics 20 (5), 335-343. https://doi.org/10.1089/dia.2017.0424 es_ES
dc.description.references Fushimi, E., Colmegna, P., De Battista, H., Garelli, F., Sánchez-Peña, R., 2019. Artificial pancreas: Evaluating the ARG algorithm without meal announcement. Journal of Diabetes Science and Technology 13 (6), 1035-1043. URL: https://doi.org/10.1177/1932296819864585 es_ES
dc.description.references Garelli, F., Mantz, R., Battista, H. D., 2011. Advanced Control for Constrained Processes and Systems. IET (Institute of Engineering and Technology). https://doi.org/10.1049/PBCE075E es_ES
dc.description.references Garelli, F., Rosales, N., Fushimi, E., Arambarri, D., Mendoza, L., De Battista,H., Sánchez-Peña, R., García Arabehety, J., Distefano, S., Barcala, C., Giun-ta, J., Las Heras, M., Martinez Mateu, C., Prieto, M., San Román, E., Kro-chik, G., Grosembacher, L., Jun. 2021a. Remote glucose monitoring platorm for multiple simultaneous patients at coronavirus disease 2019 inten-sive care units: Case report including adults and children. Diabetes Techno-logy & Therapeutics 23 (6), 471-473. https://doi.org/10.1089/dia.2020.0556 es_ES
dc.description.references Garelli, F., Rosales, N., Fushimi, E., Arambarri, D., Mendoza, L., Serafini, C.,De Battista, H., Sánchez-Peña, R., Grosembacher, L., 2021b. Primeros en-sayos ambulatorios de un páncreas artificial en Argentina. In: 6º Jornadas ITEE - 2021 - Facultad de Ingeniería - UNLP (Electrotecnia). pp. 250-255. es_ES
dc.description.references Harvey, R., Dassau, E., Zisser, H., Seborg, D. E., Doyle III, F. J., Mar 2008.Design of the glucose rate increase detector: A meal detection module forthe health monitoring system. J. Diabetes Sci. Technol. 8 (2), 307-320. https://doi.org/10.1177/1932296814523881 es_ES
dc.description.references Hespanha, J. P., Morse, A. S., Nov. 2002. Switching between stabilizing controllers. Automatica 38 (11), 1905-1917. https://doi.org/10.1016/S0005-1098(02)00139-5 es_ES
dc.description.references Hughes, C. S., Patek, S. D., Breton, M., Kovatchev, B. P., May 2011. Antici-pating the next meal using meal behavioral profiles: A hybrid model-basedstochastic predictive control algorithm for T1DM. Comput. Methods Pro-grams Biomed. 102 (2), 138-148. https://doi.org/10.1016/j.cmpb.2010.04.011 es_ES
dc.description.references León-Vargas, F., Garelli, F., De Battista, H., Vehí, J., 2015. Postprandial respon-se improvement via safety layer in closed-loop blood glucose controllers.Biomedical Signal Processing and Control 16, 80 - 87. https://doi.org/10.1016/j.bspc.2014.10.003 es_ES
dc.description.references Revert, A., Garelli, F., Picó, J., De Battista, H., Rossetti, P., Vehi, J., Bondia, J., 2013. Safety auxiliary feedback element for the artificial pancreas in type 1 diabetes. IEEE Trans Biomed Eng 60 (8), 2113-2122. https://doi.org/10.1109/TBME.2013.2247602 es_ES
dc.description.references Safonov, M. G., Chiang, R. Y., July 1989. A Schur method for balanced-truncation model reduction. IEEE Trans. Autom. Control 34 (7), 729-733. https://doi.org/10.1109/9.29399 es_ES
dc.description.references Samadi, S., Turksoy, K., Hajizadeh, I., Feng, J., Sevil, M., A, C., May 2017.Meal detection and carbohydrate estimation using continuous glucose sensordata. IEEE Journal of Biomedical and Health Information 21 (3), 619-627. https://doi.org/10.1109/JBHI.2017.2677953 es_ES
dc.description.references Sánchez-Peña, R., Colmegna, P., Garelli, F., De Battista, H., García-Violini, D., Moscoso-Vásquez, M., Rosales, N., Fushimi, E., Campos-Náñez, E., Breton, M., Beruto, V., Scibona, P., Rodriguez, C., Giunta, J., Simonovich, V., Belloso, W. H., Cherñavvsky, D., Grosembacher, L., 2018. Artificial pancreas: Clinical study in Latin America without premeal insulin boluses. J Diabetes Sci Technol 12 (5), 914-925. https://doi.org/10.1177/1932296818786488 es_ES
dc.description.references Sánchez-Peña, R., Colmegna, P., Grosembacher, L., Breton, M., Battista, H. D., Garelli, F., Belloso, W., nez, E. C.-N., Simonovich, V., Beruto, V., Scibona, P., Chernavvsky, D., 2017. Artificial pancreas: First clinical trials in Argentina. In: IFAC World Congress. es_ES
dc.description.references Turksoy, K., Samadi, S., Feng, J., Littlejohn, E., Quinn, L., Cinar, A., Jan 2016.Meal detection in patients with type 1 diabetes: A new module for the mul-tivariable adaptive artificial pancreas control system. IEEE J Biomed HealthInform 20 (1), 47-54. https://doi.org/10.1109/JBHI.2015.2446413 es_ES
dc.description.references UNLP, 2019. Insumate. tipo d-denominativa. instituto nacional de la propiedad intelectual. solicitante: Fabricio Garelli. es_ES
dc.description.references Weisman, A., Bai, J., Cardinez, M., Kramer, C., Perkins, B., 2017. Effect of artificial pancreas systems on glycaemic control in patients with type 1 diabetes: a systematic review and meta-analysis of outpatient randomised controlled trials. Lancet Diabetes Endocrinol. 5 (7), 501-512. https://doi.org/10.1016/S2213-8587(17)30167-5 es_ES
dc.description.references Youla, D. C., Jabr, H. A., Bongiorno, J. J., Feb 1976. Modern wiener-hopf de-sign of optimal controllers-part ii: The multivariable case. IEEE Trans. Au-tomat. Contr. 21 (3), 319-338. https://doi.org/10.1109/TAC.1976.1101223 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem