- -

Control por modos deslizantes de orden superior basado en funciones de Lyapunov

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control por modos deslizantes de orden superior basado en funciones de Lyapunov

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moreno, Jaime A. es_ES
dc.contributor.author Fridman, Leonid es_ES
dc.date.accessioned 2022-10-05T09:19:53Z
dc.date.available 2022-10-05T09:19:53Z
dc.date.issued 2022-09-30
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/187033
dc.description.abstract [EN] We give an overview of the methods of analysis and design of High-Order Sliding Mode Controllers (HOSM) and observers,  including also those taking advantage of a discontinuous integral action. First, discontinuous state feedback controllers enforcing a sliding mode of arbitrary order are described. Then a recent class of HOSM  controllers is presented, which consists of a continuousstate feedback controller and a discontinuous integral term. High-order sliding mode observers are also introduced,  which are able to estimate robustly and in finite time the states of the uncertain plant, and they allow the implementation of an output feedback control law. All described designs are based in explicit Lyapunov functions, what is a main contribution of the research group of the authors at the Universidad Nacional Aut´onoma de M´exico, in Mexico City. The paper is tutorial and only the basic  results are presented, leaving aside the rigorous mathematical formulation and proof. For this the appropriate literature is referred to. The results are illustrated using simulations and an experimental validation in a laboratory set up of a magnetic levitation system. es_ES
dc.description.abstract [ES] En este trabajo se presenta una panorámica del desarrollo de los métodos básicos de análisis y diseño de controladores y observadores por modos deslizantes de orden superior. Inicialmente se describen los controladores por retroalimentación de estados con una ley de control discontinua, que generan un modo deslizante de cualquier orden. Posteriormente se presenta una nueva clase de algoritmos por modos deslizantes de orden superior, que consisten en una retroalimentación de estados continua y una acción de control integral discontinua. Se describen también observadores por modos deslizantes, que estiman los estados del sistema en tiempo finito, y que permiten obtener un controlador por retroalimentación de la salida. Todos los diseños presentados se basan en el uso de funciones de Lyapunov (explícitas), que constituyen una contribución importante del grupo de trabajo de los autores en la Universidad Nacional Autónoma de México. La presentación es tutorial y solo se dan los resultados, dejando a un lado la formalización rigurosa y las pruebas matemáticas. Para ello se refiere al lector a la literatura pertinente. Se ilustran los resultados mediante simulaciones y la validación experimental en un sistema de levitación magnética. es_ES
dc.description.sponsorship PAPIIT-UNAM, proyecto IN102121 es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Sliding Modes es_ES
dc.subject Variable Structure Control es_ES
dc.subject Lyapunov Methods es_ES
dc.subject Integral Control es_ES
dc.subject Nonlinear Observers es_ES
dc.subject Control integral es_ES
dc.subject Modos deslizantes es_ES
dc.subject Control de estructura variable es_ES
dc.subject Métodos de Lyapunov es_ES
dc.subject Observadores no lineales es_ES
dc.title Control por modos deslizantes de orden superior basado en funciones de Lyapunov es_ES
dc.title.alternative Lyapunov-based HOSM control es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.17013
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//IN102121 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Moreno, JA.; Fridman, L. (2022). Control por modos deslizantes de orden superior basado en funciones de Lyapunov. Revista Iberoamericana de Automática e Informática industrial. 19(4):394-406. https://doi.org/10.4995/riai.2022.17013 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.17013 es_ES
dc.description.upvformatpinicio 394 es_ES
dc.description.upvformatpfin 406 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\17013 es_ES
dc.contributor.funder Universidad Nacional Autónoma de México es_ES
dc.description.references Andrieu, V., Praly, L., Astolfi, A., 2008. Homogeneous approximation, recur- sive observer design and output feedback. SIAM J. Control Optim. 47 (4), 1814-1850. https://doi.org/10.1137/060675861 es_ES
dc.description.references Bacciotti, A., Rosier, L., 2005. Liapunov functions and stability in control theory, 2nd Edition. Springer-Verlag, New York. https://doi.org/10.1007/b139028 es_ES
dc.description.references Bartolini, G., Ferrara, A., Usai, E., 1998. Chattering avoidance by second-order sliding mode control. IEEE Transactions on Automatic Control 43 (2), 241- 246. https://doi.org/10.1109/9.661074 es_ES
dc.description.references Bartolini, G., Pisano, A., Usai, E., 2000. First and second derivative estimation by sliding mode technique. Journal of Signal Processing 4 (2), 167 - 176. es_ES
dc.description.references Bejarano, F., Fridman, L., 2010. High order sliding mode observer for linear systems with unbounded unknown inputs. International Journal of Control 83 (9), 1920 - 1929. https://doi.org/10.1080/00207179.2010.501386 es_ES
dc.description.references Bernuau, E., Efimov, D., Perruquetti, W., Polyakov, A., Jul. 2013a. On an extension of homogeneity notion for differential inclusions. In: European Control Conference. Zurich, Switzerland. https://doi.org/10.23919/ECC.2013.6669525 es_ES
dc.description.references Bernuau, E., Efimov, D., Perruquetti, W., Polyakov, A., 2014. On homogeneity and its application in sliding mode control. Journal of the Franklin Institute 351 (4), 1816-1901. https://doi.org/10.1016/j.jfranklin.2014.01.007 es_ES
dc.description.references Bernuau, E., Efimov, D., Perruquetti, W., Polyakov, A., 2016. Homogeneity of differential inclusions. Control, Robotics & Sensors. Institution of Engineering and Technology, pp. 103-118. es_ES
dc.description.references Bernuau, E., Polyakov, A., Efimov, D., Perruquetti, W., 2013b. Verification of ISS, iISS and IOSS properties applying weighted homogeneity. Systems & Control Letters 62 (12), 1159-1167. https://doi.org/10.1016/j.sysconle.2013.09.004 es_ES
dc.description.references Bhat, S., Bernstein, D., 2005. Geometric homogeneity with applications to finite-time stability. Mathematics of Control, Signals, and Systems 17 (2), 101-127. https://doi.org/10.1007/s00498-005-0151-x es_ES
dc.description.references Boiko, I., 2009. Discontinuous control systems: frequency-domain analysis and design. Birkha ̈user, Boston. es_ES
dc.description.references Cruz-Zavala, E., Moreno, J., 2014a. Improved convergence rate of discontinuous finite-time controllers. Vol. 19. pp. 8636-8641. https://doi.org/10.3182/20140824-6-ZA-1003.02496 es_ES
dc.description.references Cruz-Zavala, E., Moreno, J. A., July 2014b. A new class of fast finite-time discontinuous controllers. In: 13th IEEE Workshop on Variable Structure Systems (VSS14). Nantes, France, pp. 1-6. https://doi.org/10.1109/VSS.2014.6881097 es_ES
dc.description.references Cruz-Zavala, E., Moreno, J., 2017. Homogeneous high order sliding mode design: A Lyapunov approach. Automatica 80, 232-238. https://doi.org/10.1016/j.automatica.2017.02.039 es_ES
dc.description.references Cruz-Zavala, E., Moreno, J., Fridman, L., 2010. Uniform robust exact differen-tiator. In: Proceedings of the IEEE Conference on Decision and Control. pp.102-107. https://doi.org/10.1109/CDC.2010.5717345 es_ES
dc.description.references Cruz-Zavala, E., Moreno, J., Fridman, L., 2011a. Adaptive gains super-twistingalgorithm for systems with growing perturbations. In: IFAC Proceedings Vo-lumes (IFAC-PapersOnline). Vol. 18. pp. 3039-3044. https://doi.org/10.3182/20110828-6-IT-1002.03529 es_ES
dc.description.references Cruz-Zavala, E., Moreno, J., Fridman, L., 2011b. Second-order uniform exactsliding mode control with uniform sliding surface. In: Proceedings of theIEEE Conference on Decision and Control. pp. 4616-4621. https://doi.org/10.1109/CDC.2011.6160493 es_ES
dc.description.references Cruz-Zavala, E., Moreno, J., Fridman, L., 2012. Uniform sliding mode controllers and uniform sliding surfaces. IMA Journal of Mathematical Control andInformation 29 (4),491-505. https://doi.org/10.1093/imamci/dns005 es_ES
dc.description.references Cruz-Zavala, E., Moreno, J., Fridman, L., 2013. Fast second-order sliding mo-de control design based on Lyapunov function. In: Proceedings of the IEEEConference on Decision and Control. pp. 2858-2863. https://doi.org/10.1109/CDC.2013.6760317 es_ES
dc.description.references Cruz-Zavala, E., Moreno, J. A., 2016a. Lyapunov approach to Higher-OrderSliding Mode design. In: Fridman, L., Barbot, J.-P., Plestan, F. (Eds.), Re-cent Trends in Sliding Mode Control. The Institution of Engineering andTechnology (IET), London, Ch. 1.1, pp. 3-28. es_ES
dc.description.references Cruz-Zavala, E., Moreno, J. A., 2016b. Lyapunov functions for continuous and discontinuous differentiators. IFAC-PapersOnLine 49 (18), 660-665, 10th IFAC Symposium on Nonlinear Control Systems NOLCOS 2016. https://doi.org/10.1016/j.ifacol.2016.10.241 es_ES
dc.description.references Cruz-Zavala, E., Moreno, J. A., Jul. 2019. Levant's arbitrary order exact differentiator: a Lyapunov approach. IEEE Transactions on Automatic Control 64 (7), 3034-3039. https://doi.org/10.1109/TAC.2018.2874721 es_ES
dc.description.references Davila, A., Moreno, J., Fridman, L., 2010. Variable gains super-twisting al-gorithm: A Lyapunov based design. In: Proceedings of the 2010 AmericanControl Conference, ACC 2010. pp. 968-973. https://doi.org/10.1109/ACC.2010.5530461 es_ES
dc.description.references Davila, A., Moreno, J. A., Fridman, L., 2009. Optimal Lyapunov function selection for reaching time estimation of super twisting algorithm. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference. pp. 8405-8410. https://doi.org/10.1109/CDC.2009.5400466 es_ES
dc.description.references Davila, J., Fridman, L., Levant, A., 2005. Second-order sliding-mode observer for mechanical systems. IEEE transactions on automatic control 50 (11), 1785-1789. https://doi.org/10.1109/TAC.2005.858636 es_ES
dc.description.references Deimling, K., 1992. Multivalued Differential Equations. Walter de gruyter. Berlin. https://doi.org/10.1515/9783110874228 es_ES
dc.description.references Ding, S., Levant, A., Li, S., Dec. 2015. New families of high-order sliding-mode controllers. In: 54th IEEE Conference on Decision and Control. Osaka, Japan, pp. 4752-4757. https://doi.org/10.1109/CDC.2015.7402960 es_ES
dc.description.references Ding, S., Levant, A., Li, S., 2016. Simple homogeneous sliding-mode controller. Automatica 67 (5), 22-32. https://doi.org/10.1016/j.automatica.2016.01.017 es_ES
dc.description.references Dorel, L., Levant, A., Dec 2008. On chattering-free sliding-mode control. In: 2008 47th IEEE Conference on Decision and Control. pp. 2196-2201. https://doi.org/10.1109/CDC.2008.4739126 es_ES
dc.description.references Efimov, D., Fridman, L., 2011. A hybrid robust non-homogeneous finite-time differentiator. IEEE Trans. on Aut. Control 56, 1213-1219. https://doi.org/10.1109/TAC.2011.2108590 es_ES
dc.description.references Filippov, A., 1988. Differential equations with discontinuous righthand side. Kluwer. Dordrecht, The Netherlands. https://doi.org/10.1007/978-94-015-7793-9 es_ES
dc.description.references Floquet, T., Barbot, J. P., 2007. Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs. International Journal of Systems Science 38 (10), 803-815. https://doi.org/10.1080/00207720701409330 es_ES
dc.description.references Freeman, R., Kokotovic, P., 1996. Robust Nonlinear control Design: State space and Lyapunov Techniques. Modern Birkha ̈user Classics, Boston. es_ES
dc.description.references Fridman, L., Levant, A., 2002. Higher-Order Sliding Modes. In: Perruqueti, W.,Barbot, J. (Eds.), Sliding Mode Control in Engineering. Marceel Dekker,Inc., New York, Ch. 3, pp. 53-102. https://doi.org/10.1201/9780203910856.ch3 es_ES
dc.description.references Fridman, L., Moreno, J. A., Bandyopadhyay, B., Kamal, S., Chalanga, A., 2015. Continuous nested algorithms: The fifth generation of sliding mode controllers. In:Yu,X.,O ̈nder Efe, M.(Eds.), Recent Advances in Sliding Modes: From Control to Intelligent Mechatronics. Vol. 24. Springer International Publishing, Cham, pp. 5-35. https://doi.org/10.1007/978-3-319-18290-2_2 es_ES
dc.description.references Hahn, W., 1967. Stability of Motion. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-50085-5 es_ES
dc.description.references Hermes, H., 1991. Homogeneous coordinates and continuous asymptotically stabilizing feedback controls, in, Differential Equations, Stability and Control (S. Elaydi, ed.). Vol. 127 of Lecture Notes in Pure and Applied Math. Marcel Dekker, Inc., NY, pp. 249-260. es_ES
dc.description.references Hestenes, M. R., 1966. Calculus of variations and optimal control theory. John Wiley & Sons, New York. es_ES
dc.description.references Isidori, A., 1995. Nonlinear control systems. Springer Verlag, Berlin. https://doi.org/10.1007/978-1-84628-615-5 es_ES
dc.description.references Isidori, A., 1999. Nonlinear control systems II. Springer Verlag, London. https://doi.org/10.1007/978-1-4471-0549-7 es_ES
dc.description.references Kamal, S., Chalanga, A., Moreno, J. A., Fridman, L., Bandyopadhyay, B., June 2014. Higher order super-twisting algorithm. In: 2014 13th International Workshop on Variable Structure Systems (VSS). pp. 1-5. https://doi.org/10.1109/VSS.2014.6881129 es_ES
dc.description.references Kamal, S., Moreno, J., Chalanga, A., Bandyopadhyay, B., Fridman, L., 2016. Continuous terminal sliding-mode controller. Automatica 69, 308-314. https://doi.org/10.1016/j.automatica.2016.02.001 es_ES
dc.description.references Khalil, H., 2002. Nonlinear Systems, 3rd Edition. Prentice-Hall, New Jersey. es_ES
dc.description.references Kobayashi, S., Suzuki, S., Furuta, K., 2007. Frequency characteristics of Levant's differentiator and adaptive sliding mode differentiator. International Journal of Systems Science 38 (10), 825 - 832. https://doi.org/10.1080/00207720701631198 es_ES
dc.description.references Kochalummoottil, J., Shtessel, Y., Moreno, J., Fridman, L., 2011. Adaptive twist sliding mode control: A lyapunov design. pp. 7623-7628. https://doi.org/10.1109/CDC.2011.6160982 es_ES
dc.description.references Laghrouche, S., Harmouche, M., Chitour, Y., July 2017. Higher order super-twisting for perturbed chains of integrators. IEEE Transactions on Automatic Control 62 (7), 3588-3593. https://doi.org/10.1109/TAC.2017.2670918 es_ES
dc.description.references Laghrouche, S., Harmouche, M., Chitour, Y., Obeid, H., Fridman, L. M., 2021. Barrier function-based adaptive higher order sliding mode controllers. Automatica 123, 109355. https://doi.org/10.1016/j.automatica.2020.109355 es_ES
dc.description.references Levant, A., 1993. Sliding order and sliding accuracy in Sliding Mode Control. International Journal of Control 58 (6), 1247-1263. https://doi.org/10.1080/00207179308923053 es_ES
dc.description.references Levant, A., 1998. Robust exact differentiation via sliding mode technique. Automatica 34 (3), 379-384. https://doi.org/10.1016/S0005-1098(97)00209-4 es_ES
dc.description.references Levant, A., 2001. Universal single-input single-output (siso) sliding-mode controllers with finite-time. IEEE Trans. Autom. Control 46 (9), 1447-1451. https://doi.org/10.1109/9.948475 es_ES
dc.description.references Levant, A., 2003. High-order sliding modes: differentiation and output-feedback control. Int. J. Control 76 (9), 924-941. https://doi.org/10.1080/0020717031000099029 es_ES
dc.description.references Levant, A., 2005a. Homogeneity approach to high-order sliding mode design. Automatica 41, 823-830. https://doi.org/10.1016/j.automatica.2004.11.029 es_ES
dc.description.references Levant, A., 2005b. Quasi-continuous high-order sliding-mode controllers. IEEE Trans. Autom. Control 50 (11), 1812-1816. https://doi.org/10.1109/TAC.2005.858646 es_ES
dc.description.references Levant, A., April 2007. Principles of 2-Sliding Mode design. Automatica 43 (4), 576-586. https://doi.org/10.1016/j.automatica.2006.10.008 es_ES
dc.description.references Levant, A., Alelishvili, L., July 2007. Integral high-order sliding modes. IEEE Transactions on Automatic Control 52 (7), 1278-1282. https://doi.org/10.1109/TAC.2007.900830 es_ES
dc.description.references Levant, A., Livne, M., 2016. Weighted homogeneity and robustness of sliding mode control. Automatica 72, 186 - 193. https://doi.org/10.1016/j.automatica.2016.06.014 es_ES
dc.description.references Levant, A., Livne, M., 2018. Globally convergent differentiators with variable gains. Int. J. of Control 91 (9), 1994-2008. https://doi.org/10.1080/00207179.2018.1448115 es_ES
dc.description.references Levant, A., Michael, A., 2009. Adjustment of high-order sliding-mode contro-llers. International Journal of Robust and Nonlinear Control 19 (15), 1657-1672. https://doi.org/10.1002/rnc.1397 es_ES
dc.description.references Mendoza-Avila, J., Moreno, J. A., Fridman, L. An idea for Lyapunov functiondesign for arbitrary order continuous twisting algorithms. In: 2017 IEEE56th Annual Conference on Decision and Control (CDC). Dec 2017. pp.5426-5431. https://doi.org/10.1109/CDC.2017.8264462 es_ES
dc.description.references Mendoza-Avila, J., Moreno, J. A., Fridman, L. M., 2020. Continuous twisting algorithm for third-order systems. IEEE Transactions on Automatic Control 65 (7), 2814-2825. https://doi.org/10.1109/TAC.2019.2932690 es_ES
dc.description.references Mercado-Uribe, A., Moreno, J., 2018a. Full and partial state discontinuous integral control. IFAC-PapersOnLine 51 (13), 573-578, 2nd IFAC Conference on Modelling, Identification and Control of Nonlinear Systems MICNON 2018. https://doi.org/10.1016/j.ifacol.2018.07.341 es_ES
dc.description.references Mercado-Uribe, A., Moreno, J., July 2018b. Output feedback discontinuous integral controller for siso nonlinear systems. In: 2018 15th International Workshop on Variable Structure Systems (VSS). Vol. 2018-July. pp. 114- 119. https://doi.org/10.1109/VSS.2018.8460305 es_ES
dc.description.references Mercado-Uribe, A., Moreno, J. A., 2020a. Homogeneous integral controllers for a magnetic suspension system. Control Engineering Practice 97, 104325. https://doi.org/10.1016/j.conengprac.2020.104325 es_ES
dc.description.references Mercado-Uribe, J. A., Moreno, J. A., 2020b. Discontinuous integral action for arbitrary relative degree in sliding-mode control. Automatica 118, 109018. https://doi.org/10.1016/j.automatica.2020.109018 es_ES
dc.description.references Moreno, J. A., 2009. A linear framework for the robust stability analysis of ageneralized super-twisting algorithm. In: 2009 6th International Conferenceon Electrical Engineering, Computing Science and Automatic Control, CCE2009. pp. 12-17. https://doi.org/10.1109/ICEEE.2009.5393477 es_ES
dc.description.references Moreno, J. A., 2010. Lyapunov analysis of non homogeneous Super-Twistingalgorithms. In: Proceedings of the 2010 11th International Workshop on Va-riable Structure Systems, VSS 2010. pp. 534-539. https://doi.org/10.1109/VSS.2010.5544672 es_ES
dc.description.references Moreno, J. A., 2011. Lyapunov approach for analysis and design of second order sliding mode algorithms. In: Fridman, L., Moreno, J., Iriarte, R. (Eds.), Sliding Modes after the first decade of the 21st Century. LNCIS, 412. Springer-Verlag, Berlin - Heidelberg, pp. 113-150. https://doi.org/10.1007/978-3-642-22164-4_4 es_ES
dc.description.references Moreno, J. A., 2013. On discontinuous observers for second order systems: Pro-perties, analysis and design. In: Bandyopadhyay, B., Janardhanan, S., Spur-geon, S. K. (Eds.), Advances in Sliding Mode Control - Concepts, Theoryand Implementation. LNCIS, 440. Springer-Verlag, Berlin - Heidelberg, pp.243-265. https://doi.org/10.1007/978-3-642-36986-5_12 es_ES
dc.description.references Moreno, J. A., June 2016. Discontinuous integral control for mechanical sys-tems. In: 2016 14th International Workshop on Variable Structure Systems(VSS). 2016. pp. 142-147. https://doi.org/10.1109/VSS.2016.7506906 es_ES
dc.description.references Moreno, J. A., 2018a. Discontinuous integral control for systems with relativedegree two. In: Clempner, J., (Eds.), W. Y. (Eds.), New Perspectives and Ap-plications of Modern Control Theory: In Honor of A. S. Poznyak. SpringerInternational Publishing, pp. 187-218. https://doi.org/10.1007/978-3-319-62464-8_8 es_ES
dc.description.references Moreno, J. A., 2018b. Exact differentiator with varying gains. InternationalJournal of Control 91 (9), 1983-1993. https://doi.org/10.1080/00207179.2017.1390262 es_ES
dc.description.references Moreno, J. A., 2018c. Lyapunov-based design of homogeneous high-order sli-ding modes. In: Li, S., Yu, X., Fridman, L., Man, Z., Wang, X. (Eds.), Ad-vances in Variable Structure Systems and Sliding Mode Control-Theory andApplications. Vol. 115. Springer International Publishing, Cham, pp. 3-38. https://doi.org/10.1007/978-3-319-62896-7_1 es_ES
dc.description.references Moreno, J. A., 2020. Asymptotic tracking and disturbance rejection of time-varying signals with a discontinuous PID controller. Journal of Process Control 87, 79-90. https://doi.org/10.1016/j.jprocont.2020.01.006 es_ES
dc.description.references Moreno,J.A., Cruz-Zavala, E., Mercado-Uribe, A., 2020. Discontinuous Integral Control for Systems with Arbitrary Relative Degree. Springer International Publishing, Cham, pp. 29-69. https://doi.org/10.1007/978-3-030-36621-6_2 es_ES
dc.description.references Moreno, J. A., Osorio, M., Dec. 2008. A Lyapunov approach to second-ordersliding mode controllers and observers. In: 47th IEEE Conference on Deci-sion and Control. Cancun, Mexico, pp. 2856-2861. https://doi.org/10.1109/CDC.2008.4739356 es_ES
dc.description.references Moreno, J., Osorio, M., 2012. Strict Lyapunov functions for the Super-Twisting algorithm. IEEE Transactions on Automatic Control 57 (4), 1035-1040. https://doi.org/10.1109/TAC.2012.2186179 es_ES
dc.description.references Moulay, E., Perruquetti, W., 2006. Finite time stability and stabilization of a class of continuous systems. Journal of Mathematical Analysis and Applications 323 (2), 1430 - 1443. https://doi.org/10.1016/j.jmaa.2005.11.046 es_ES
dc.description.references Nakamura, H., Yamashita, Y., Nishitani, H., 2002. Smooth Lyapunov functions for Homogeneous Differential Inclusions. In: Proc. 41st SICE Annual Conference. Vol. 3. pp. 1974-1979. es_ES
dc.description.references Nakamura, N., Nakamura, H., Yamashita, Y., Nishitani, H., 2009. Homogeneous stabilization for input affine homogeneous systems. IEEE Trans. Autom. Control. 54 (9), 2271-2275. https://doi.org/10.1109/TAC.2009.2026865 es_ES
dc.description.references Orlov, Y., Dec 2003. Finite time stability of homogeneous switched systems. In: Decision and Control, 2003. Proceedings. 42nd IEEE Conference on. Vol. 4. pp. 4271-4276. es_ES
dc.description.references Orlov, Y. V., 2009. Discontinuous systems: Lyapunov analysis and robust synthesis under uncertainty conditions. Springer-Verlag, Berlin-Heidelberg. es_ES
dc.description.references Perez-Ventura, U., Fridman, L., 2019a. Design of super-twisting control gains: A describing function based methodology. Automatica 99, 175 - 180. https://doi.org/10.1016/j.automatica.2018.10.023 es_ES
dc.description.references Perez-Ventura, U., Fridman, L., 2019b. When is it reasonable to implement the discontinuous sliding-mode controllers instead of the continuous ones? frequency domain criteria. International Journal of Robust and Nonlinear Control 29 (3), 810-828. https://doi.org/10.1002/rnc.4347 es_ES
dc.description.references Polyakov, A., Efimov, D., Perruquetti, W., 2015. Finite-time and fixed-time stabilization: Implicit Lyapunov function method. Automatica 51 (1), 332-340. https://doi.org/10.1016/j.automatica.2014.10.082 es_ES
dc.description.references Polyakov, A., Efimov, D., Perruquetti, W., 2016. Robust stabilization of MIMO systems in finite/fixed time. Int. J. Robust Nonlinear Control 26 (1), 69-90. https://doi.org/10.1002/rnc.3297 es_ES
dc.description.references Polyakov, A., Poznyak, A., 2009a. Lyapunov function design for finite-time convergence analysis: "twisting" controller for second-order sliding mode realization. Automatica 45 (2), 444-448. https://doi.org/10.1016/j.automatica.2008.07.013 es_ES
dc.description.references Polyakov, A., Poznyak, A., 2009b. Reaching time estimation for "super-twisting" second-order sliding mode controller via Lyapunov function designing. IEEE Trans. Autom. Control 54 (8), 1951-1955. https://doi.org/10.1109/TAC.2009.2023781 es_ES
dc.description.references Polyakov, A., Poznyak, A., 2012. Unified Lyapunov function for a finite-time stability analysis of relay second-order sliding mode control systems. IMA J. Math. Control & Information 29 (4), 529-550. https://doi.org/10.1093/imamci/dns007 es_ES
dc.description.references Rosier, L., 1992. Homogeneous Lyapunov function for homogeneous continuous vector field. Systems & Control Letters 19, 467-473. https://doi.org/10.1016/0167-6911(92)90078-7 es_ES
dc.description.references Sanchez, T., Moreno, J. Construction of Lyapunov functions for a class of hig-her order sliding modes algorithms. In: Proceedings of the IEEE Conferenceon Decision and Control. pp. 6454-6459 es_ES
dc.description.references Sanchez, T., Moreno, J., 2013. On a sign controller for the triple integrator. In: Proceedings of the IEEE Conference on Decision and Control. pp. 3566-3571. https://doi.org/10.1109/CDC.2013.6760431 es_ES
dc.description.references Sanchez, T., Moreno, J., 2014. Lyapunov functions for Twisting and Terminal controllers. In: 13th IEEE Workshop on Variable Structure Systems (VSS14). https://doi.org/10.1109/VSS.2014.6881136 es_ES
dc.description.references Sanchez, T., Moreno, J. A., 2019. Design of Lyapunov functions for a class of homogeneous systems: Generalized forms approach. International Journal of Robust and Nonlinear Control 29 (3), 661-681. https://doi.org/10.1002/rnc.4274 es_ES
dc.description.references Santiesteban, R., Fridman, L., Moreno, J., 2010. Finite-time convergence analy-sis for "twisting" controller via a strict Lyapunov function. In: Proceedingsof the 2010 11th International Workshop on Variable Structure Systems,VSS 2010. pp. 1-6. https://doi.org/10.1109/VSS.2010.5545144 es_ES
dc.description.references Shtessel, Y., Edwards, C., Fridman, L., Levant, A., 2014. Sliding Mode Control and Observation. Birkha ̈user, Springer, New York. https://doi.org/10.1007/978-0-8176-4893-0 es_ES
dc.description.references Shtessel, Y. B., Shkolnikov, I. A., 2003. Aeronautical and space vehicle control in dynamic sliding manifolds. International Journal of Control 76 (9/10), 1000-1017. https://doi.org/10.1080/0020717031000099065 es_ES
dc.description.references Torres-Gonzalez, V., Fridman, L., Moreno, J. Continuous twisting algorithm.In: 2015 54th IEEE Conference on Decision and Control (CDC). pp. 5397-5401. https://doi.org/10.1109/CDC.2015.7403064 es_ES
dc.description.references Torres-Gonzalez, V., Sanchez, T., Fridman, L. M., Moreno, J. A., 2017. Design of continuous twisting algorithm. Automatica 80, 119 - 126. https://doi.org/10.1016/j.automatica.2017.02.035 es_ES
dc.description.references Utkin, V., Guldner, J., Shi, J., 2009. Sliding Mode Control in Electro-Mechanical Systems, 2nd Edition. CRC Press, Taylor & Francis, London, UK. es_ES
dc.description.references Vasiljevic, L. K., Khalil, H. K., 2008. Error bounds in differentiation of noisy signals by high-gain observers. Systems and Control Letters 57, 856-862. https://doi.org/10.1016/j.sysconle.2008.03.018 es_ES
dc.description.references Zamora, C., Moreno, J. A., Kamal, S., Oct 2013. Control integral discontinuo para sistemas mecanicos. In: 2013 Congreso Nacional de Control Automatico (CNCA AMCA). Asociacion de Mexico de Control Automatico (AM-CA), Ensenada, Baja California, Mexico, pp. 11-16. es_ES
dc.description.references Zubov, V. I., 1964. Methods of A. M. Lyapunov and their applications. Groningen: P. Noordhoff Limited. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem