- -

Geomechanical characterization and analysis of the Upper Cretaceous flysch materials found in the Basque Arc Alpine region

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Geomechanical characterization and analysis of the Upper Cretaceous flysch materials found in the Basque Arc Alpine region

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garzón-Roca, Julio es_ES
dc.contributor.author Torrijo, F.J. es_ES
dc.contributor.author Company Rodríguez, Julio es_ES
dc.contributor.author Cobos Campos, Guillermo es_ES
dc.date.accessioned 2022-11-07T19:02:04Z
dc.date.available 2022-11-07T19:02:04Z
dc.date.issued 2021-10 es_ES
dc.identifier.issn 1435-9529 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189403
dc.description.abstract [EN] Flysch materials are one of the most challenging geological materials and often give rise to slope instability problems. Due to its natural heterogeneity, geomechanical characterization of flysch materials is somewhat difficult. The Spanish Basque Arc Alpine region is a very well-known location for flysch materials. In this paper, an area of approximately 100 km(2) in the region is intensively studied and their flysch materials geomechanically characterized. A total of 33 locations are investigated by a broad geological-geotechnical investigation, involving petrographic analyses, geomechanical stations, boreholes, and mechanical laboratory tests. In addition, a slope inventory was carried out to assess the situation in the existing slopes in the area. Characterization of materials is carried out in terms of RQD, RMR, and GSI as well as using the Hoek-Brown failure criterion. Different correlations are assessed, establishing their appropriateness for estimating the mechanical parameters of a flysch material rock mass. es_ES
dc.description.sponsorship Financial support was provided by the Department of Geological and Geotechnical Engineering of the UPV. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Bulletin of Engineering Geology and the Environment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alpine regions es_ES
dc.subject Flysch material es_ES
dc.subject Geomechanical characterization es_ES
dc.subject Geological Strength Index es_ES
dc.subject Uniaxial compressive strength es_ES
dc.subject Shear strength parameters es_ES
dc.title Geomechanical characterization and analysis of the Upper Cretaceous flysch materials found in the Basque Arc Alpine region es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10064-021-02383-3 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Garzón-Roca, J.; Torrijo, F.; Company Rodríguez, J.; Cobos Campos, G. (2021). Geomechanical characterization and analysis of the Upper Cretaceous flysch materials found in the Basque Arc Alpine region. Bulletin of Engineering Geology and the Environment. 80(10):7831-7846. https://doi.org/10.1007/s10064-021-02383-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10064-021-02383-3 es_ES
dc.description.upvformatpinicio 7831 es_ES
dc.description.upvformatpfin 7846 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 80 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\447771 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Ábalos B (2016) Geologic map of the Basque Cantabrian Basin and a new tectonic interpretation of the Basque Arc. International Journal of Earth Sciences (geologische Rundschau) 105:2327–2354 es_ES
dc.description.references Ábalos B, Alkorta A, Iríbar V (2008) Geological and isotopic constraints on the structure of the Bilbao anticlinorium (Basque-Cantabrian basin, North Spain). J Struct Geol 30:1354–1367 es_ES
dc.description.references Akin M (2013) Slope stability problems and back analysis in heavily jointed rock mass: a case study from Manisa, Turkey. Rock Mech Rock Eng 46:359–371 es_ES
dc.description.references ASTM D2664 (2004) Standard test method for triaxial compressive strength of undrained rock core specimens without pore pressure measurements American Society for Testing and Materials West Conshohocken, PA es_ES
dc.description.references ASTM D3967 (2001) Standard test method for splitting tensile strength of intact rock core specimens American Society for Testing and Materials West Conshohocken, PA es_ES
dc.description.references ASTM D5607 (2016) Standard test method for performing laboratory direct shear strength tests of rock specimens under constant normal force American Society for Testing and Materials West Conshohocken, PA es_ES
dc.description.references ASTM D5731 (2007) Standard test method for determination of the point load strength index of rock and application to rock strength classifications American Society for Testing and Materials West Conshohocken, PA es_ES
dc.description.references ASTM D7012 (2010) Standard test method for compressive strength and elastic module of intact rock core specimens under varying states of stress and temperatures American Society for Testing and Materials West Conshohocken, PA es_ES
dc.description.references Baceta JA, Orue-Etxebarria X, Apellaniz E (2011) El flysch entre Deba y Zumaia/ The flysch between Deba and Zumaia. Enseñanza De Las Ciencias De La Tierra 18(3):269–283 es_ES
dc.description.references Barton N, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6(4):189–236 es_ES
dc.description.references Bieniawski ZT (1973) Engineering classification of jointed rock masses. South African Institution of Civil Engineering 15(12):335–344 es_ES
dc.description.references Bieniawski ZT (1979) The geomechanics classification in rock engineering applications. 4th International Conference on Rock Mechanics, Montreaux, Switzerland es_ES
dc.description.references Bieniawski ZT (1989) Engineering rock mass classifications. John Wiley and Sons, Inc. es_ES
dc.description.references Bouma AH (1962). Sedimentology of some flysch deposits. A Graphic Aproach to Facies Interpretation. Elsevier, Amsterdam, pp 168 es_ES
dc.description.references Cámara P (1997) The Basque-Cantabrian Basin’s Mesozoic tectonosedimentary evolution. Mémoire De La Société Géologique De France 171:167–176 es_ES
dc.description.references Cano M, Tomás R (2013) Characterization of the instability mechanisms affecting slopes on carbonatic Flysch: Alicante (SE Spain), case study. Eng Geol 156:68–91 es_ES
dc.description.references Saroglou C, Qi S, Guo S, Wu F (2019) ARMR, a new classification system for the rating of anisotropic rock masse. Bull Eng Geol Env 78:3611–3626 es_ES
dc.description.references Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham, WE (ed) Classification of carbonate rocks: a symposium. American Association of Petroleum Geologists, Memoir 1, 108–121 es_ES
dc.description.references EVE (1998) Geological map of Basque Country, scale 1:25.000. Sheet no. 64-II, San Sebastian. Ente Vasco de Energía, pp 54 [in Spanish] es_ES
dc.description.references Feuillée P, Rat P (1971) Structures et paléogéographies pyrénéocantabriques. In: Debyser J, Le Pichon X, Montadert L (eds) Histoire Structurale du Golfe de Gascogne. Publications de l’Institut Français du Pétrole, Collection Colloques et Séminaires 22(2):1–48 es_ES
dc.description.references Folk RL (1962) Spectral subdivisions of limestone types. In: Ham WE (ed) Classification of carbonate rocks: A symposium, American Association of Petroleum Geologists, Memoir 1, pp 62–85 es_ES
dc.description.references Folk RL (1974) The petrology of sedimentary rocks. Hemphill Publishing Co., Austin, Texas, p 182 es_ES
dc.description.references Fortsakis P, Nikas K, Marinos V, Marinos P (2012) Anisotropic behaviour of stratified rock masses in tunnelling. Eng Geol 141–142(19):74–83 es_ES
dc.description.references García-Mondéjar J, Agirrezabala LM, Aranburu A, Fernández-Mendiola PA, Gómez-Pérez I, López-Horgue M, Rosales I (1996) Aptian-Albian tectonic pattern of the Basque-Cantabrian Basin (northern Spain). Geol J 31:13–45 es_ES
dc.description.references Gokceoglu C, Sonmez H, Kayabasi A (2003) Predicting the deformation moduli of rock masses. Int J Rock Mech Min Sci 40(5):701–710 es_ES
dc.description.references Gómez M, Verges J, Riaza C (2002) Inversion tectonics of the Northern margin of the Basque Cantabrian Basin. Bulletin De La Société Géologique De France 173:449–459 es_ES
dc.description.references Gong M, Qi S, Liu J (2010) Engineering geological problems related to high geo-stresses at the Jinping I Hydropower Station, Southwest China. Bull Eng Geol Env 69:373–380 es_ES
dc.description.references Hoedemaeker PhJ (1973) Olisthostromes and other delapsional deposits, and their occurrence in the region of Moratalla (Prov. Of Murcia, Spain). Scripta Geol 19:1–197 es_ES
dc.description.references Hoek E (2000) Rock engineering. Course Notes by Evert Hoek. Balkema, Rotterdam, pp  313 es_ES
dc.description.references Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186 es_ES
dc.description.references Hoek E, Carranza-Torres C, Corkum B (2002) Hoek-Brown failure criterion – 2002 Edition. In: Hammah R, Bawden W, Curran J, Telesnicki M (eds) Proceedings of NARMSTAC 2002, Mining Innovation and Technology, Toronto es_ES
dc.description.references ISRM (1981) Suggested methods for rock characterization, testing and monitoring. International Society for Rock Mechanics, Pergamon Press, Oxford es_ES
dc.description.references ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. International Society for Rock Mechanics, Lisbon es_ES
dc.description.references Kuenen PhH, Migliorini CI (1950) Turbidity currents as a cause of graded bedding. J Geol 58:91–127 es_ES
dc.description.references Le Pichon X, Bonnin J, Francheteau J, Sibuet JC (1971) Une hypothèse d´évolution tectonique du golfe de Gascogne. In: Histoire structurale du Golfe de Gascogne. Editions Technip, Paris es_ES
dc.description.references Marinos P (2019) A revised, geotechnical classification GSI system for tectonically disturbed heterogeneous rock masses, such as flysch. Bull Eng Geol Env 78:899–912 es_ES
dc.description.references Marinos V, Fortsakis P, Prountzopoulos G (2006) Estimation of rock mass properties of heavily sheared flysch using data from tunnelling construction. Proceedings of the 10th IAEG International Congress, Nottingham es_ES
dc.description.references Marinos V, Fortsakis P, Prountzopoulos G (2011) Estimation of geotechnical properties and classification of geotechnical behaviour in tunnelling for flysch rock masses. Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, Athens, 1:435–440 es_ES
dc.description.references Marinos P, Hoek E (2001) Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bull Eng Geol Env 60:82–92 es_ES
dc.description.references Mathey B (1982) El Cretácico superior del Arco Vasco. In: García A (ed) El Cretácico de España. Universidad Complutense de Madrid, Madrid, pp 111–135 es_ES
dc.description.references Mary C, Moreau M-G, Orue-Etxebarria X, Apellaniz E, Courtillot V (1991) Biostratigraphy and magnetostratigraphy of the Cretaceous/Tertiary Sopelana section (Basque country). Earth Planetary Science Letters 106:133–150 es_ES
dc.description.references Morales T, Uribe-Etxebarria G, Uriarte JA, Fernández de Valderrama I (2004) Geomechanical characterisation of rock masses in Alpine regions: the Basque Arc (Basque-Cantabrian basin, Northern Spain). Eng Geol 71:343–362 es_ES
dc.description.references Mutti E, Bernoulli E, Ricci Lucchi F, Tinterri R (2009) Turbidites and turbidity currents from Alpine “flysch” to the exploration of continental margins. Sedimentology 56:267–318 es_ES
dc.description.references Mutti E, Tinterri R, Benevelli G, DiBiase D, Cavanna G (2003) Deltaic, mixed and turbidite sedimentation of ancient foreland basins. In: Mutti E, Steffens GS, Pirmez C, Orlando M, Roberts D (eds) Turbidites: Models and Problems. Marine and Petroleum Geology 20:733–755 es_ES
dc.description.references Palmstrom A (1974) Characterization of jointing density and the quality of rock masses (in Norwegian). Internal report, A.B. Berdal, Norway es_ES
dc.description.references Pettijohn F, Potter PE, Siever R (1987). Sand and sandstone, 2nd ed. Springer-Verlag, pp  553 es_ES
dc.description.references Popiolek S, Sala H, Thiel K (1993) Geotechnical flysch rock mass classification (KF). In: Thiel K, Zabuski I (eds) Proc. of Seminar on underground structures in complex geological conditions, Swinna Poreba, Poland. Institute of Meteorology and Water Management, Warsaw, 27–39 es_ES
dc.description.references Pujalte V, Baceta JI, Dinarès-Turell J, Orue-etxebarria X, Parés JM, Payros A (1995) Biostratigraphic and magnetostratigraphic intercalibration of latest Cretaceous and Paleocene depositional sequences from the deep-water Basque Basin, western Pyrenees, Spain. Earth Planetary Science Letters 136:17–30 es_ES
dc.description.references Pujalte V, Baceta JI, Orue-Etxebarria X, Payros A (1998) Paleocene Strata of the Basque Country, eastern Pyrenees, Northern Spain: facies, and sequence development in a deep-water starved basin. In: Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, SEPM Special Publication, 311–328 es_ES
dc.description.references Read SAL, Richards LR, Perrin ND (1999). Applicability of the Hoek–Brown failure criterion to New Zealand greywacke rocks. Proceedings of the 9th International Congress on Rock Mechanics, Paris es_ES
dc.description.references Roca E, Muñoz JA, Ferrer O, Ellouz N (2011) The role of the Bay of Biscay extensional structure in the configuration of the Pyrenean orogen: contraints from the MARCONI Deep Seismic Reflection survey. Tectonics 30(TC 2001):1–33 es_ES
dc.description.references Sanders JE (1965) Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. In: Middleton GV (ed) Primary Sedimentary Structures and their Hydrodynamic Interpretation. SEPM Spec Publ 12:192–219 es_ES
dc.description.references Serafim JL, Pereira JP (1983) Considerations of the geomechanical classification of Bieniawski. International Symposium on Geological Engineering and Underground Construction, Lisbon es_ES
dc.description.references Tugend J, Manatschal G, Kuzsnir NJ, Masini E, Mohn G, Thinon I (2014) Formation and deformation of hyperextended rift systems: insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics 33:1239–1276 es_ES
dc.description.references Ünal E (1996) Modified rock mass classification: M-RMR System. Milestones in Rock Engineering, the Bieniawski Jubilee Collection. Balkema, Rotterdam, pp 203–223 es_ES
dc.description.references Vassilis M (2019) Application of the GSI system to the classification of soft rocks. In: Kanji M, He M, Ribeiro e Sousa L (eds) Soft Rock Mechanics and Engineering, Springer Nature, 503–539 es_ES
dc.description.references Wu LZ, Li B, Huang RQ, Sun P (2017) Experimental study and modeling of shear rheology in sandstone with non-persistent joints. Eng Geol 222:201–211 es_ES
dc.description.references Ziegler PA (1988) Evolution of the Arctic-North Atlantic and the Western Tethys: AAPG Memoir 43, pp 198 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem