- -

Applying rosemary extract and caffeic acid to modify the composition of Monastrell wines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Applying rosemary extract and caffeic acid to modify the composition of Monastrell wines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Anaya, Juan Alberto es_ES
dc.contributor.author Lizama Abad, Victoria es_ES
dc.contributor.author García Esparza, Mª José es_ES
dc.contributor.author Alvarez Cano, María Inmaculada es_ES
dc.date.accessioned 2022-11-22T19:02:42Z
dc.date.available 2022-11-22T19:02:42Z
dc.date.issued 2022-07 es_ES
dc.identifier.issn 1438-2377 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190049
dc.description.abstract [EN] This work studies the effect of applying rosemary extract and caffeic acid on the polyphenolic and aromatic composition of Monastrell wines, as well as the influence of traditional winemaking or incorporating prefermentative maceration. For this purpose, three treatments were carried out in triplicate. In one of them, rosemary extract was applied on the clusters 10 days before harvest, caffeic acid was applied in the same way in another, and, finally, this acid was applied to grape before crushing. Each treatment was run by both traditional vinification and vinification with prefermentative maceration. After making wines, they were monitored for 12 months after fermentation. The application of rosemary extract, and that of caffeic acid but to a lesser extent, increased the color, the concentration of anthocyanins, and the percentage of polymerized anthocyanins, while prefermentation maceration gave rise to wines with a higher concentration of condensed tannins and polyphenols. Applying rosemary extract and caffeic acid in the vineyard also increased the concentration of esters and other compounds that favor wine aromatic quality, which was also enhanced by prefermentative maceration. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof European Food Research and Technology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Rosemary extract es_ES
dc.subject Caffeic acid es_ES
dc.subject Wine es_ES
dc.subject Polyphenols es_ES
dc.subject Aromas es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Applying rosemary extract and caffeic acid to modify the composition of Monastrell wines es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00217-022-04005-y es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Anaya, JA.; Lizama Abad, V.; García Esparza, MJ.; Alvarez Cano, MI. (2022). Applying rosemary extract and cafeic acid to modify the composition of Monastrell wines. European Food Research and Technology. 248(7):1787-1802. https://doi.org/10.1007/s00217-022-04005-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00217-022-04005-y es_ES
dc.description.upvformatpinicio 1787 es_ES
dc.description.upvformatpfin 1802 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 248 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\453756 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Berke B, De Freitas V (2007) A colorimetric study of oenin copigmented by procyanidins. J Sci Food Agric 87:260–265 es_ES
dc.description.references Zhang XK, He F, Zhang B, Reeves MJ, Liu Y, Zhao X, Duan CQ (2018) The effect of prefermentative addition of gallic acid and ellagic acid on the red wine color copigmentation and phenolic profiles during wine aging. Food Res Int 106:568–579 es_ES
dc.description.references Markovic JMD, Petranovíc NA, Baranac JM (2005) The copigmentation effect of sinapic acid on malvin: a spectroscopic investigation on colour enhancement. J Photochem Photobiol B 78:223–228 es_ES
dc.description.references Heras-Roger J, Díaz-Romero C, Darias-Martín J (2016) What gives a wine its strong red color main correlations affecting copigmentation. J Agric Food Chem 64(34):6567–6574 es_ES
dc.description.references Boulton R (2001) The copigmentation of anthocyanins and its role in the color of red wine. Am J Enol Vitic 52:67–87 es_ES
dc.description.references Markovic JMD, Petranovíc NA, Baranac JM (2005) Spectrophotometric study of the copigmentation of Malvin with caffeic and ferulic. Acids J Agric Food Chem 48(11):5530–5536 es_ES
dc.description.references García-Marino M, Bailón MT, Rivas-Gonzalo JC (2013) Color-copigmentation study by tristimulus colorimetry (CIELAB) in red wines obtained from Tempranillo and Graciano varieties. Food Res Int 51(1):123–131 es_ES
dc.description.references Fan L, Wang Y, Xie P, Zhang L, Li Y, Zhou J (2019) Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: chromaticity kinetics and structural simulation. Food Chem 275:299–308 es_ES
dc.description.references Zhao X, Ding BW, Qin JW, He F, Duan C-Q (2020) Intermolecular copigmentation between five common 3-O- monoglucosidic anthocyanins and three phenolics in red wine model solutions: the influence of substituent pattern of anthocyanin B ring. Food Chem 326:1269 es_ES
dc.description.references Gordillo B, Rivero FJ, Jara-Palacios MJ, González-Miret ML, Heredia FJ (2021) Impact of a double post- fermentative maceration with ripe and overripe seeds on the phenolic composition and color stability of Syrah red wines from warm climate. Food Chem 346:128919 es_ES
dc.description.references Brouillard R, Dangles O (1994) Anthocyanin molecular interactions: the first step in the formation of newpigments during wine aging. Food Chem 51(4):365–371 es_ES
dc.description.references Hermosín I, Sanchez-Palomo E, Vicario A (2005) Phenolic composition and magnitude of copigmentation in young and shortly aged red wines made from the cultivars Cabernet Sauvignon Cencibel and Syrah. Food Chem 92:269–283 es_ES
dc.description.references Baranac J, Petronoviv N, Dimitric-Markovic J (1996) Spectrophotometric study of anthocyan copigmentation reactions. J Agric Food Chem 45:1698–1700 es_ES
dc.description.references Gordillo B, Rodríguez-Pulido FJ, González-Miret ML, Quijada-Morín N, Rivas-Gonzalo JC, García-Estévez I, Heredia FJ, Escribano-Bailón MT (2015) Application of differential colorimetry to evaluate anthocyanin–flavonol– flavanol ternary copigmentation interactions in model solutions. J Agric Food Chem 63(35):7645–7653 es_ES
dc.description.references Dangles O, Brouillard R (1992) A spectroscopic method based on the anthocyanin copigmentation interaction and applied to the quantitative study of molecular complexos. J Chem Soc 2:247–257 es_ES
dc.description.references Kanha N, Surawang S, Pitchakarn P, Regenstein JM, Laokuldilok T (2019) Copigmentation of cyaniding 3-O- glucoside with phenolics: thermodynamic data and thermal stability. Food Biosci 30:100419 es_ES
dc.description.references Markovic S, Tosovíc J (2000) Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids. Food Chem 210:585–592 es_ES
dc.description.references Dimitric-Markovic JM, Ignjatovic LM, Markovic DA, Baranac JM (2003) Antioxidant capabilities of some organic acids and their co-pigments with malvin—Part I. J Electro Anal Chem 553:169–175 es_ES
dc.description.references Dimitric-Markovic JM, Ignjatovic LM, Markovic DA, Baranac JM (2003) Antioxidant capabilities of some organic acids and their co-pigments with malvin—part II. J Electro Anal Chem 553:177–186 es_ES
dc.description.references Sroka Z, Cisowski W (2003) Hydrogen peroxide scavenging antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol 41:753–758 es_ES
dc.description.references Gómez-Míguez M, González-Manzano S, Escribano-Bailón M, Heredia F, Santos-Buelga C (2006) Influence of different Phenolic copigments on the color of malvidin-3-glucoside. J Agric Food Chem 54:5422–5429 es_ES
dc.description.references Gris EF, Ferreira EA, Falcao LD, Bordignon-Luiz MT (2007) Caffeic acid copigmentation of anthocyanins from Cabernet Sauvignon grape extracts in model system. Food Chem 100(3):1289–1296 es_ES
dc.description.references Teixeira N, Cruz LF, Bras N, Mateus N, Ramos M, De Freitas V (2013) Structural features of copigmentation of oenin with different polyphenol copigments. J Agric Food Chem 61:6942–6948 es_ES
dc.description.references Darias-Martín J, Carrillo M, Diaz EB (2001) Enhancement of wine colour by prefermentation addition of copigments. Food Chem 73:217–220 es_ES
dc.description.references Darias-Martín J, Martín B, Carrillo M, Lamuela R, Diaz C, Boulton R (2002) The effect of caffeic acid on the colour of red wine. J Agric Food Chem 50(7):2062–2067 es_ES
dc.description.references Petrova I, Gandova V, Denev P (2018) Kinetic parameters of the co-pigmentation effect of caffeic acid and strawberry anthocyanins. Izvest Khimiya Bulgarska Akademiyana Naukite 50(Special issue C):184–189 es_ES
dc.description.references Alvarez I, Aleixandre JL, García MJ, Lizama V, Aleixandre Tudó JL (2009) Influencia de la microoxigenación en la conservación de los compuestos polifenólicos de vinos de Tempranillo procedentes de tratamientos de copigmentación. In: Nuevos Horizontes en la Viticultura y Enología, 481–484. Ed Gienol (Spain) es_ES
dc.description.references Lambert SG, Asenstorfer RE, Williamson NM, Iland PG, Jones GP (2011) Copigmentation between malvidin-3- glucoside and some wine constituents and its importance to colour expression in red wine. Food Chem 125(1):106–115 es_ES
dc.description.references Aleixandre-Tudó JL, Álvarez I, Lizama V, García MJ, Aleixandre JL, Du Toit WJ (2013) Impact of caffeic acid addition on phenolic composition of tempranillo wines from different winemaking techniques. J Agric Food Chem 61:11900–11912 es_ES
dc.description.references Zhang B, Wang Q, Zhou PP, Li NN, Han SY (2020) Copigmentation evidence of oenin with phenolic compounds: a comparative study of spectrographic thermodynamic and theoretical data. Food Chem 313:126163 es_ES
dc.description.references Rustioni L, Bedgood DR, Failla O, Prenzler PD (2012) Copigmentation and anti-copigmentation in grape extracts studied by spectrophotometry and post-column-reaction HPLC. Food Chem 132(4):2194–2201 es_ES
dc.description.references Gombau J, Vignault A, Pascual O, Canals JM, Teissedre PL, Zamora F (2016) Influence of supplementation with different oenological tannins on malvidin-3-monoglucoside copigmentation. In: BIO Web of Conferences. EDP Sciences es_ES
dc.description.references Vallazo-Valleumbrocio G, Medel-Marabolí M, Peña-Meira A, López-Solis R, Obreque-Slier E (2017) Commercial enological tannins: characterization and their relative impact on the phenolic and sensory composition of carménère wine during Bottle Aging. Food Sci Technol 83:172–183 es_ES
dc.description.references Koyama K, Goto-Yamamoto N, Hashizume K (2007) Influence of maceration temperature in red wine vinification on extraction of phenolics from berry skins and seeds of grape (Vitis vinifera). Biosci Biotechnol Biochem 71(4):958–965 es_ES
dc.description.references Gordillo B, López-Infante MI, Ramírez-Pérez P, Gonzalez-Miret ML, Heredia FJ (2010) Influence of prefermentative cold maceration on the color and anthocyanic copigmentation of organic tempranillo wines elaborated in a warm climate. J Agric Food Chem 58(11):6797–6803 es_ES
dc.description.references Gómez-Miguez M, Gonzalez-Miret ML, Heredia FJ (2007) Evolution of colour and anthocyanin composition of Syrah wines elaborated with pre-fermentative cold maceration. J Food Eng 79(1):271–278 es_ES
dc.description.references Gil-Muñoz R, Moreno-Pérez A, Vila-López R, Fernández-Fernández JI, Martínez-Cutillas A, Gómez-Plaza E (2009) Influence of low temperature prefermentative techniques on chromatic and phenolic characteristics of Syrah and Cabernet Sauvignon wines. Eur Food Res Technol 228:777–788 es_ES
dc.description.references Álvarez I, Aleixandre JL, García MJ, Lizama V (2005) Impact of prefermentative maceration on the phenolic and volatile compounds in Monastrell red wines. Anal Chim Acta 563:109–115 es_ES
dc.description.references Aleixandre-Tudo JL, Alvarez I, Lizama V, Nieuwoudt H, Garcia MJ, Aleixandre JL, Du Toit WJ (2016) Modelling phenolic and volatile composition to characterize the effects of pre-fermentative cold soaking in Tempranillo wines. LWT-Food Sci Technol 66:193–200 es_ES
dc.description.references Mihnea M, González-San-José ML, Ortega-Heras M, Pérez-Magariño S (2015) A comparative study of the volatile content of Mencía wines obtained using different pre-fermentative maceration techniques. LWT Food Sci Technol 64:32–41 es_ES
dc.description.references Moreno-Pérez A, Vila-López R, Fernández-Fernández JI, Martínez-Cutillas A, Gil-Muñoz R (2013) Influence of cold pre-fermentation treatments on the major volatile compounds of three wine varieties. Food Chem 139(1–4):770–776 es_ES
dc.description.references Maturano YP, Mestre MV, Esteve-Zarzoso B, Nally MC, Lerena MC, Toro ME, Vazquez F, Combina M (2015) Yeast population dynamics during prefermentative cold soak of Cabernet Sauvignon and Malbec wines. Int J Food Microbiol 199:23–32 es_ES
dc.description.references Schwarz M, Picazo-Bacete J, Winterhalter P, Hermosín-Gutiérrez I (2005) Effect of copigments and grape cultivar on the colour of red wines fermented after the addition of copigments. J Agric Food Chem 53:8372–8381 es_ES
dc.description.references Lizama V, Alvarez I, Garcia MJ, Apolinar R, Aleixandre JL (2007) Efecto de la adición prefermentativa de copigmentos en la composición polifenólica de los vinos de Tempranillo. In: Avances en ciencias y tecnicas enológicas. Ed Gienol (Spain), pp 223–224 es_ES
dc.description.references Parrado J, Escudero-Gilete ML, Friaza V, García-Martınez A, Gonzalez-Miret ML, Bautista JD, Heredia FJ (2007) Enzymatic vegetable extract with bio- active components: Influence of fertiliser on the colour and anthocyanins of red grapes. J Sci Food Agric 87:2310–2318 es_ES
dc.description.references Capone DL, Black DL, Jeffery DW (2012) Effects on 3-mercaptohexan-1-ol precursor concentrations from prolonged storage of sauvignon blanc grapes prior to crushing and pressing. J Agric Food Chem 60(13):3515–3523 es_ES
dc.description.references Alvarez I, Anaya JA, Lizama V, García MJ, Aleixandre JL, Aleixandre-Tudo JL (2015) Aplicación de extracto de té verde para incrementar la concentración polifenólica de los vinos de Tempranillo de Utiel-Requena. Innov Vitivinícola 2015:463–466 es_ES
dc.description.references Bimpilas A, Panagopoulou M, Tsimogiannis D, Oreopoulou V (2016) Anthocyanin copigmentation and color of wine: the effect of naturally obtained hydroxycinnamic acids as cofactors. Food Chem 197:39–46 es_ES
dc.description.references Gutiérrez-Gamboa G, Romanazzi G, Garde-Cerdán T, Pérez-Álvarez EP (2019) A review of the use of biostimulants in the vineyard for improved grape and wine quality: effects on prevention of grapevine diseases. J Sci Food Agric 99(3):1001–1009 es_ES
dc.description.references Gutiérrez-Gamboa G, Pérez-Álvarez EP, Rubio Bretón P, Garde-Cerdán T (2019) Foliar application of methyl jasmonate to Graciano and Tempranillo vines: effects on grape amino acid content during two consecutive vintages. Int J Vine Wine Sci 53(1):1–9 es_ES
dc.description.references Martínez-Gil A, Angenieux M, Pardo-García A, Alonso G, Ojeda H, Salinas M (2013) Glycosidic aroma precursors of syrah and chardonnay grapes after an oak extract application to the grapevines. Food Chem 138:956–965 es_ES
dc.description.references Pardo-García AI, Serrano de la Hoz K, Zalacain A, Alonso G, Salinas M (2014) Effect of wine foliar treatments on the varietal aroma of Monastrell wines. Food Chem 163:258–266 es_ES
dc.description.references Song J, Smart R, Wang H, Dambergs B, Sparrow A, Qian M (2015) Effect of grape bunch sunlight exposure and uv radiation on phenolics and volatile composition of Vitis Vinifera L. cv Pinot Noir wine. Food Chem 173:424–431 es_ES
dc.description.references Portu J, López R, Ewald P, Santamaria P, Winterhalter P, Garde-Cerdán T (2018) Evaluation of Grenache Graciano and Tempranillo grape stilbene content after field applications of elicitors and nitrogen compounds. J Sci Food Agric 98:1856–1862 es_ES
dc.description.references Martinez-Gil AM, Garde-Cerdan T, Martínez L, Alonso GL, Salinas MR (2011) Effect of oak extract application to Verdejo grapevines on grape and wine aroma. J Agric Food Chem 59:3253–3263 es_ES
dc.description.references Martinez-Gil AM, Garde-Cerdan T, Zalacaín A, Pardo-García AI, Salinas MR (2012) Applications of an oak extract on Petit Verdot grapevines Influence on grape and wine volatile compounds. Food Chem 132(4):1836–1845 es_ES
dc.description.references Pardo-García AI, Martínez-Gil AM, Cadahía E, Pardo F, Alonso GL, Salinas MR (2014) Oak extract application to grapevines as a plant biostimulant to increase wine polyphenols. Food Res Int 55:150–160 es_ES
dc.description.references Sanchéz-Gómez R, Torregrosa L, Zalacaín A, Ojeda H, Bouckenooghe V, Schneider R, Alonso GL, Salinas MR (2016) Behavior of glycosylated aroma precursors in microvine fruits after guaiacol foliar application. Sci Hortic 246:11–28 es_ES
dc.description.references Portu J, López R, Baroja E, Santamaria P, Garde-Cerdán T (2016) Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: methyl jasmonate chitosan and yeast extract. Food Chem 201:213–221 es_ES
dc.description.references Portu J, López R, Santamaría P, Garde-Cerdán T (2004) Elicitation with methyl jasmonate supported by precursor feeding with phenylalanine: effect on Garnacha grape phenolic content. Food Chem 237:416–422 es_ES
dc.description.references Del Pozo-Insfran D (2006) Emerging technologies and strategies to enhance anthocyanin stability A dissertation presented to the graduate school of the University of Florida in partial fulfillment of the requirements for the Degree of Doctor of Philosophy University of Florida (EEUU) es_ES
dc.description.references Talcott ST, Hernández-Brenes C, Pires DM, Del Pozo-Insfran D (2003) Phytochemical stability and color retention of copigmented and processed Muscadine grape juice. J Agric Food Chem 51(4):957–963 es_ES
dc.description.references Brenes CH, Del Pozo-Insfran D, Talcott ST (2005) Stability of copigmented anthocyanins and ascorbic acid in a grape juice model system. J Agric Food Chem 53(1):49–56 es_ES
dc.description.references Darici B, Dimitrov D, Yoncheva T, Yıldırım HK (2020) Natural alternatives of sulphur dioxide used in wine and their effects on aromatic compounds. Ukrainian Food J 9(4):873–938 es_ES
dc.description.references Wang H, Provan GJ, Helliwell K (2004) Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem 87(2):307–311 es_ES
dc.description.references Luis JC, Johnson CB (2005) Seasonal variations of rosmarinic and carnosic acids in rosemary extract: analysis of their in vitro antiradical activity. Span J Agric Res 3(1):106–112 es_ES
dc.description.references Mena P, Cirlini M, Tassotti M, Herrlinger KA, DallAsta C, De Rio D (2016) Phytochemical profiling of flavonoids phenolic acids terpenoids and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules 21(11):1576 es_ES
dc.description.references Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A (2015) Biostimulants and crop responses: a review. Biol Agric Hortic 31(1):1–17 es_ES
dc.description.references Commission Regulation (EEC) (1990) Community methods for the analysis of wines. In: Jl of the European Communities 2676, 17 September 1990, pp 1–193 es_ES
dc.description.references Blouin J (1992) Tecniques d’analyse des moûtes et des vins: 199–201 (Ed. Dujardin-Salleron: Paris. es_ES
dc.description.references Glories Y (1984) La Couleur des Vins Rouges 1ère Partie: Les équilibres des anthocyanes et des tanins. Vigne Vin 18:195–217 es_ES
dc.description.references Singleton UL, Rossi JA (1995) Colorimetry of total penolics with hosphomolybdic-phosphotungstic acid reagent. Am J Enol Vitic 16:144–158 es_ES
dc.description.references Ribéreau-Gayón J, Peynaud E, Sudraud J, Ribéreau-Gayón P (1979) Ciencias y Técnicas del vino Tomo I: Análisis y control de los vinos Paris: Dunod es_ES
dc.description.references Boulton RB (1996) A method for the assessment of copigmentation in red wines. In: Presented at the Forty-seventh Annual Meeting of the American Society for Enology and Viticulture, Reno, NV es_ES
dc.description.references Vivas N, Glories Y, Lagune L, Saucier C, Augustin M (1994) Estimation of the polymerisation level of procyanidins from grapes and wines by use of p-dimethylaminocinnamaldehyde. J Int des Sci de la Vigne et du Vin 28:319–336 es_ES
dc.description.references Jensen JS, Blachez B, Egebo M, Meyer AB (2007) Rapid extraction of polyphenols from red grapes. Am J Enol Vitic 58:451–461 es_ES
dc.description.references Ortega C, López R, Cacho J, Ferreira V (2001) Fast analysis of important wine volatile compounds: development and validation of a new method based on gas chromatographic–flame ionisation detection analysis of dichloromethane microextracts. J Chromatogr A 923:205–214 es_ES
dc.description.references Hernández-Orte P, Franco E, González-Huerta C, Martínez-García J, Cabellos M, Suberviola J, Orriols I, Cacho J (2014) Criteria to discriminate between wines aged in oak barrels and macerated with oak fragments. Food Res Int 57:234–241 es_ES
dc.description.references Figueiredo-González M, Cancho-Grande B, Simal-Gándara J (2017) Effects on colour and phenolic composition of sugar concentration processes in dried or dried-off vine grapes and their aged or not natural sweet wines. Trends Food Sci Technol 31:36–54 es_ES
dc.description.references Zoecklein BW, Fugelsang KC, Gump BH, Nury FS (1995) Wine analysis and production, 1st edn. Chapman & Hall, New York es_ES
dc.description.references Alvarez I, Aleixandre JL, García MJ, Lizama V, Aleixandre-Tudó JL (2009) Effect of the prefermentative addition of copigments on the polyphenolic composition of Tempranillo wines after malolactic fermentation. Eur Food Res Technol 228(4):501–510 es_ES
dc.description.references Zhang B, Wang Q, Yang B, Li NN, Niu JM, Shi X, Han SY (2021) Copigmentation evidence of phenolic compound: the effect of caffeic and rosmarinic acids addition on the chromatic quality and phenolic composition of Cabernet Sauvignon red wine from the Hexi Corridor region (China). J Food Compos Anal 102(1):104037 es_ES
dc.description.references Favre G, Darwin C, Gustavo G-N (2021) Use of enological tannins and alternative macerations in a Tannat red winemaking essay. Agrociencia 17(1):65–73 es_ES
dc.description.references Casassa F (2007) Efecto de dos varienates de maceración prefermentativa en frío sobre la composición y características organolépticas de vinos Malbec. In: Tesis para optar al Grado de Magíster Scientiae an Viticultura y Enología. California Politechnic State University es_ES
dc.description.references Okubo K, Goto-Yamamoto N, Okazaki N (2003) Effect of prefermentation cold soak on extraction of anthocyanin during red wine making. J Brewing Soc Jpn 98:193–200 es_ES
dc.description.references Marais J (2003) Effect of different wine-making techniques on the composition and quality of Pinotage wine I: low-temperature skin contact prior to fermentation. S Afr J Enol Vitic 24(2):76–79 es_ES
dc.description.references Budic-Leto I, Lovriv T, Vrhovšek U (2003) Influence of different maceration techniques and ageing on proanthocyanidins and anthocyanins of red wine cv Babić (Vitis vinifera L.). Food Technol Biotechnol 41(4):122398 es_ES
dc.description.references González-Neves G, Favre G, Gil G, Ferrer M, Charamelo D (2015) Effect of cold pre-fermentative maceration on the color and composition of young red wines cv. Tannat. J Food Sci Technol 56(6):3449–3457 es_ES
dc.description.references González-Neves G, Favre G, Piccardo D, Gil G (2016) Anthocyanin profile of young red wines of Tannat Syrah and Merlot made using maceration enzymes and cold soak. Int J Food Sci Technol 51:260–267 es_ES
dc.description.references García-Ruiz A, Rodríguez-Bencomo JJ, Garrido I, Martín-Álvarez PJ, Moreno-Arribas MV, Bartolomé B (2013) Assessment of the impact of the addition of antimicrobial plant extracts to wine: volatile and phenolic composition. J Sci Food Agric 93(10):2507–2516 es_ES
dc.description.references Yıldırım HK, Akçay YD, Güvenç U, Altındişli A, Sözmen EY (2005) Antioxidant activities of organic grape, pomace, juice, must, wine and their correlation with phenolic content. Int J Food Sci Technol 40(2):133–142 es_ES
dc.description.references Ruiz-García Y, López-Roca JM, Bautista-Ortín AB, Gil-Muñoz R, Gómez-Plaza E (2014) Effect of combined use of benzothiadiazole and methyl jasmonate on volatile compounds of Monastrell wine. Am J Enol Vitic 65:238–243 es_ES
dc.description.references D’Onofrio C, Matarese F, Cuzzola A (2018) Effect of methyl jasmonate on the aroma of Sangiovese grapes and wines. Food Chem 242(1):352–361 es_ES
dc.description.references Vitalini S, Ruggiero A, Rapparini F, Neri L, Tonni M, Iriti M (2014) The application of chitosan and benzothiadiazole in vineyard (Vitis vinifera L. cv Groppello Gentile) changes the aromatic profile and sensory attributes of wine. Food Chem 162(1):192–205 es_ES
dc.description.references Selli S, Canbas A, Cabaroglu T, Erten H, Gunata Z (2006) Aroma components of cv Muscat of Bornova wines and influence of skin contact treatment. Food Chem 94:319 es_ES
dc.description.references De Santis D, Frangipane MT (2010) Effect of prefermentative cold maceration on the aroma and phenolic profiles of a merlot red wine. Ital J Food Sci 22(1):47–53 es_ES
dc.description.references Cai J, Zhu BQ, Wang YH, Lu L, Lan YB, Reeves MJ, Duan CQ (2014) Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters. Food Chem 154:217–229 es_ES
dc.description.references Casassa LF, Sari SE (2015) Sensory and chemical effects of two alternatives of prefermentative cold soak in Malbec wines during winemaking and bottle ageing. Int J Food Sci Technol 50(4):1044–1055 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem