- -

Ag/ZnO nano-structures synthesized by single-step solution combustion approach for the photodegradation of Cibacron Red and Triclopyr

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ag/ZnO nano-structures synthesized by single-step solution combustion approach for the photodegradation of Cibacron Red and Triclopyr

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yadav, Suprabha es_ES
dc.contributor.author Kumar, Naveen es_ES
dc.contributor.author Marí, B. es_ES
dc.contributor.author Mittal, Anuj es_ES
dc.contributor.author Jangra, Vijaya es_ES
dc.contributor.author Sharma, Anuradha es_ES
dc.contributor.author Kumari, Kavitha es_ES
dc.date.accessioned 2022-12-12T19:01:37Z
dc.date.available 2022-12-12T19:01:37Z
dc.date.issued 2021-07 es_ES
dc.identifier.issn 1573-4137 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190605
dc.description.abstract [EN] In the current work, an energy-efficient solution combustion route is adopted to synthesize silver-modified ZnO nanomaterials having 1, 3, 5, and 7 mol% of silver content. The samples were characterized by different techniques to uncover the morphology, crystallinity, chemical state, and optical properties. The thermally stable, well-crystalline wurtzite phase of ZnO and cubic phase of silver was obtained in the synthesized samples. It was found that due to the surface plasmon resonance effect of silver there is an enhancement in the light absorption after the introduction of Ag in ZnO. Photocatalytic performances of all samples are analyzed by taking Cibacron Red and Triclopyr as model pollutants. It is observed that due to the surface plasmon resonance effect and formation of oxygen vacancies, Ag¿ZnO nanomaterials containing 7 mol% silver content showed the highest activity for both pollutants under UV illumination. The photoluminescence technique is used to detect the recombination of photoinduced charged species. The samples showed superior activity in the neutral medium as compared to the acidic and basic medium. The synthesized materials are highly beneficial for the energy-efficient removal of pollutants from the environment. es_ES
dc.description.sponsorship Maharshi Dayanand University, Rohtak and University Grant Commission are acknowledged by NK and SY for financial assistance in form of Radha Krishnan Minor Project and Senior Research Fellowship respectively. es_ES
dc.language Inglés es_ES
dc.publisher Bentham Science es_ES
dc.relation.ispartof Current Nanoscience es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Solution combustion es_ES
dc.subject Photocatalytic es_ES
dc.subject Triclopyr es_ES
dc.subject Oxygen vacancies es_ES
dc.subject Prominent es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Ag/ZnO nano-structures synthesized by single-step solution combustion approach for the photodegradation of Cibacron Red and Triclopyr es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13204-021-01943-z es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Yadav, S.; Kumar, N.; Marí, B.; Mittal, A.; Jangra, V.; Sharma, A.; Kumari, K. (2021). Ag/ZnO nano-structures synthesized by single-step solution combustion approach for the photodegradation of Cibacron Red and Triclopyr. Current Nanoscience. 11(7):1977-1991. https://doi.org/10.1007/s13204-021-01943-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s13204-021-01943-z es_ES
dc.description.upvformatpinicio 1977 es_ES
dc.description.upvformatpfin 1991 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\464730 es_ES
dc.description.references Adhikari S, Banerjee A, Eswar NK et al (2015) Photocatalytic inactivation of E. coli by ZnO–Ag nanoparticles under solar radiation. RSC Adv 5:51067–51077. https://doi.org/10.1039/C5RA06406F es_ES
dc.description.references Ahn BD, Kang HS, Kim JH et al (2006) Synthesis and analysis of Ag-doped ZnO. J Appl Phys 100:093701. https://doi.org/10.1063/1.2364041 es_ES
dc.description.references Ansari SA, Khan MM, Lee J, Cho MH (2014) Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route. J Ind Eng Chem 20:1602–1607. https://doi.org/10.1016/j.jiec.2013.08.006 es_ES
dc.description.references Priya A, Arumugam M et al (2020) Fabrication of visible-light active BiFeWO6/ZnO nanocomposites with enhanced photocatalytic activity. Colloids Surf Physicochem Eng Asp 586:124294. https://doi.org/10.1016/j.colsurfa.2019.124294 es_ES
dc.description.references Ba-Abbad MM, Kadhum AAH, Mohamad AB et al (2013) Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol–gel technique. Chemosphere 91:1604–1611. https://doi.org/10.1016/j.chemosphere.2012.12.055 es_ES
dc.description.references Cai Y, Fan H, Xu M, Li Q (2013) Rapid photocatalytic activity and honeycomb Ag/ZnO heterostructures via solution combustion synthesis. Colloids Surf Physicochem Eng Asp 436:787–795. https://doi.org/10.1016/j.colsurfa.2013.08.008 es_ES
dc.description.references Chai B, Wang X, Cheng S et al (2014) One-pot triethanolamine-assisted hydrothermal synthesis of Ag/ZnO heterostructure microspheres with enhanced photocatalytic activity. Ceram Int 40:429–435. https://doi.org/10.1016/j.ceramint.2013.06.019 es_ES
dc.description.references Degen A, Kosec M (2000) Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J Eur Ceram Soc 20:667–673. https://doi.org/10.1016/S0955-2219(99)00203-4 es_ES
dc.description.references Georgekutty R, Seery MK, Pillai SC (2008) A highly efficient Ag–ZnO photocatalyst: synthesis, properties, and mechanism. J Phys Chem C 112:13563–13570. https://doi.org/10.1021/jp802729a es_ES
dc.description.references González-Cortés SL (2020) Solution combustion synthesis of nanostructured solid catalysts for sustainable chemistry. World Scientific (Europe) es_ES
dc.description.references He H, Luo Z, Yu C (2020) Multifunctional ZnWO4 nanoparticles for photocatalytic removal of pollutants and disinfection of bacteria. J Photochem Photobiol Chem 401:112735. https://doi.org/10.1016/j.jphotochem.2020.112735 es_ES
dc.description.references Kahouli M, Barhoumi A, Bouzid A et al (2015) Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method. Superlattices Microstruct 85:7–23. https://doi.org/10.1016/j.spmi.2015.05.007 es_ES
dc.description.references Karunakaran C, Rajeswari V, Gomathisankar P (2011) Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO. Solid State Sci 13:923–928. https://doi.org/10.1016/j.solidstatesciences.2011.02.016 es_ES
dc.description.references Kim IS, Jeong E-K, Kim DY et al (2009) Investigation of p-type behavior in Ag-doped ZnO thin films by E-beam evaporation. Appl Surf Sci 255:4011–4014. https://doi.org/10.1016/j.apsusc.2008.10.117 es_ES
dc.description.references Kumar N, Chauhan NS, Mittal A, Sharma S (2018) TiO2 and its composites as promising biomaterials: a review. Biometals 31:147–159. https://doi.org/10.1007/s10534-018-0078-6 es_ES
dc.description.references Kumaresan N, Sinthiya MMA, Praveen Kumar M et al (2020) Investigation on the g-C3N4 encapsulated ZnO nanorods heterojunction coupled with GO for effective photocatalytic activity under visible light irradiation. Arab J Chem 13:2826–2843. https://doi.org/10.1016/j.arabjc.2018.07.013 es_ES
dc.description.references Kumari V, Mittal A, Jindal J et al (2019) S-, N- and C-doped ZnO as semiconductor photocatalysts: a review. Front Mater Sci 13:1–22. https://doi.org/10.1007/s11706-019-0453-4 es_ES
dc.description.references Kumari V, Yadav S, Mittal A et al (2020) Hydrothermally synthesized nano-carrots ZnO with CeO2 heterojunctions and their photocatalytic activity towards different organic pollutants. J Mater Sci Mater Electron 31:5227–5240. https://doi.org/10.1007/s10854-020-03083-6 es_ES
dc.description.references Li Y, Zhao X, Fan W (2011) Structural, electronic, and optical properties of Ag-doped ZnO nanowires: first principles study. J Phys Chem C 115:3552–3557. https://doi.org/10.1021/jp1098816 es_ES
dc.description.references Liang Y, Guo N, Li L et al (2016) Facile synthesis of Ag/ZnO micro-flowers and their improved ultraviolet and visible light photocatalytic activity. New J Chem 40:1587–1594. https://doi.org/10.1039/C5NJ02388B es_ES
dc.description.references Lin D, Wu H, Zhang R, Pan W (2009) Enhanced photocatalysis of electrospun Ag−ZnO heterostructured nanofibers. Chem Mater 21:3479–3484. https://doi.org/10.1021/cm900225p es_ES
dc.description.references Liu Y, Xu C, Zhu Z et al (2018) Self-assembled ZnO/Ag hollow spheres for effective photocatalysis and bacteriostasis. Mater Res Bull 98:64–69. https://doi.org/10.1016/j.materresbull.2017.09.057 es_ES
dc.description.references Liu Y, Zhang Q, Xu M et al (2019) Novel and efficient synthesis of Ag–ZnO nanoparticles for the sunlight-induced photocatalytic degradation. Appl Surf Sci 476:632–640. https://doi.org/10.1016/j.apsusc.2019.01.137 es_ES
dc.description.references Marí B, Singh KC, Verma N et al (2015) Luminescence properties of Eu2+/Eu3+ activated barium aluminate phosphors with Gd3+ concentration variation. Trans Indian Ceram Soc 74:157–161. https://doi.org/10.1080/0371750X.2015.1082932 es_ES
dc.description.references Marí B, Singh KC, Verma N, Jindal J (2016) Optical properties of Yb-doped ZnO/MgO nanocomposites. Ceram Int 42:13018–13023. https://doi.org/10.1016/j.ceramint.2016.05.079 es_ES
dc.description.references Mittal A, Mari B, Sharma S et al (2019a) Non-metal modified TiO2: a step towards visible light photocatalysis. J Mater Sci Mater Electron 30:3186–3207. https://doi.org/10.1007/s10854-018-00651-9 es_ES
dc.description.references Mittal A, Sharma S, Kumari V et al (2019b) Highly efficient, visible active TiO2/CdS/ZnS photocatalyst, study of activity in an ultra low energy consumption LED based photo reactor. J Mater Sci Mater Electron 30:17933–17946. https://doi.org/10.1007/s10854-019-02147-6 es_ES
dc.description.references Mittal A, Sharma S, Kumar T et al (2020) Surfactant-assisted hydrothermally synthesized novel TiO2/SnS@Pd nano-composite: structural, morphological and photocatalytic activity. J Mater Sci Mater Electron 31:2010–2021. https://doi.org/10.1007/s10854-019-02720-z es_ES
dc.description.references Mohammadzadeh S, Olya ME, Arabi AM et al (2015) Synthesis, characterization and application of ZnO-Ag as a nanophotocatalyst for organic compounds degradation, mechanism and economic study. J Environ Sci 35:194–207. https://doi.org/10.1016/j.jes.2015.03.030 es_ES
dc.description.references Nehru LC, Swaminathan V, Sanjeeviraja C (2012) Rapid synthesis of nanocrystalline ZnO by a microwave-assisted combustion method. Powder Technol 226:29–33. https://doi.org/10.1016/j.powtec.2012.03.042 es_ES
dc.description.references Pathak TK, Kroon RE, Swart HC (2018) Photocatalytic and biological applications of Ag and Au doped ZnO nanomaterial synthesized by combustion. Vacuum 157:508–513. https://doi.org/10.1016/j.vacuum.2018.09.020 es_ES
dc.description.references Payra S, Challagulla S, Bobde Y et al (2019) Probing the photo- and electro-catalytic degradation mechanism of methylene blue dye over ZIF-derived ZnO. J Hazard Mater 373:377–388. https://doi.org/10.1016/j.jhazmat.2019.03.053 es_ES
dc.description.references Payra S, Ganeshan SK, Challagulla S, Roy S (2020) A correlation story of syntheses of ZnO and their influence on photocatalysis. Adv Powder Technol 31:510–520. https://doi.org/10.1016/j.apt.2019.11.006 es_ES
dc.description.references Pei Z, Ding L, Hu J et al (2013) Defect and its dominance in ZnO films: a new insight into the role of defect over photocatalytic activity. Appl Catal B Environ 142–143:736–743. https://doi.org/10.1016/j.apcatb.2013.05.055 es_ES
dc.description.references Poulios I, Kositzi M, Kouras A (1998) Photocatalytic decomposition of triclopyr over aqueous semiconductor suspensions. J Photochem Photobiol Chem 115:175–183. https://doi.org/10.1016/S1010-6030(98)00259-7 es_ES
dc.description.references Pyne S, Sahoo GP, Bhui DK et al (2012) Enhanced photocatalytic activity of metal coated ZnO nanowires. Spectrochim Acta A Mol Biomol Spectrosc 93:100–105. https://doi.org/10.1016/j.saa.2012.02.050 es_ES
dc.description.references Sarma B, Sarma BK (2017) Fabrication of Ag/ZnO heterostructure and the role of surface coverage of ZnO microrods by Ag nanoparticles on the photophysical and photocatalytic properties of the metal-semiconductor system. Appl Surf Sci 410:557–565. https://doi.org/10.1016/j.apsusc.2017.03.154 es_ES
dc.description.references Seftel EM, Popovici E, Mertens M et al (2008) SnIV-containing layered double hydroxides as precursors for nano-sized ZnO/SnO2 photocatalysts. Appl Catal B Environ 84:699–705. https://doi.org/10.1016/j.apcatb.2008.06.006 es_ES
dc.description.references Sen P, Ghosh J, Abdullah A et al (2003) Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique. J Chem Sci 115:499–508. https://doi.org/10.1007/BF02708241 es_ES
dc.description.references Shraavan S, Challagulla S, Banerjee S, Roy S (2017) Unusual photoluminescence of Cu–ZnO and its correlation with photocatalytic reduction of Cr(VI). Bull Mater Sci 40:1415–1420. https://doi.org/10.1007/s12034-017-1496-8 es_ES
dc.description.references Si Y, Chen W, Shang S et al (2020) g-C3N4/Pt/BiVO4 nanocomposites for highly efficient visible-light photocatalytic removal of contaminants and hydrogen generation. Nanotechnology 31:125706. https://doi.org/10.1088/1361-6528/ab5bc5 es_ES
dc.description.references Su J, Shang Q, Guo T et al (2018) Construction of heterojunction ZnFe2O4/ZnO/Ag by using ZnO and Ag nanoparticles to modify ZnFe2O4 and its photocatalytic properties under visible light. Mater Chem Phys 219:22–29. https://doi.org/10.1016/j.matchemphys.2018.08.003 es_ES
dc.description.references Vaiano V, Jaramillo-Paez CA, Matarangolo M et al (2019) UV and visible-light driven photocatalytic removal of caffeine using ZnO modified with different noble metals (Pt, Ag and Au). Mater Res Bull 112:251–260. https://doi.org/10.1016/j.materresbull.2018.12.034 es_ES
dc.description.references Venkatesham M, Ayodhya D, Madhusudhan A, Veerabhadram G (2012) Synthesis of stable silver nanoparticles using gum acacia as reducing and stabilizing agent and study of its microbial properties: a novel green approach. Int J Green Nanotechnol 4:199–206. https://doi.org/10.1080/19430892.2012.705999 es_ES
dc.description.references Verma N, Yadav S, Marí B et al (2018) Synthesis and charcterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye. Trans Indian Ceram Soc 77:1–7. https://doi.org/10.1080/0371750X.2017.1417059 es_ES
dc.description.references Verma N, Marí B, Singh KC et al (2019) Enhanced luminescence by tunable coupling of Eu3+ and Tb3+ in ZnAl2O4:Eu3+:Tb3+ phosphor synthesized by solution combustion method. J Aust Ceram Soc 55:179–185. https://doi.org/10.1007/s41779-018-0223-2 es_ES
dc.description.references Wang R, Xin JH, Yang Y et al (2004) The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites. Appl Surf Sci 227:312–317. https://doi.org/10.1016/j.apsusc.2003.12.012 es_ES
dc.description.references Wang J, Wang Z, Huang B et al (2012) Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl Mater Interfaces 4:4024–4030. https://doi.org/10.1021/am300835p es_ES
dc.description.references Welderfael T, Yadav OP, Taddesse AM, Kaushal J (2013) Synthesis, characterization and photocatalytic activities of Ag-N-codoped ZnO nanoparticles for degradation of methyl red. Bull Chem Soc Ethiop 27:221–232. https://doi.org/10.4314/bcse.v27i2.7 es_ES
dc.description.references Wu Z, Xu C, Wu Y et al (2013) ZnO nanorods/Ag nanoparticles heterostructures with tunable Ag contents: A facile solution-phase synthesis and applications in photocatalysis. CrystEngComm 15:5994. https://doi.org/10.1039/c3ce40753e es_ES
dc.description.references Xin Z, Li L, Zhang X, Zhang W (2018) Microwave-assisted hydrothermal synthesis of chrysanthemum-like Ag/ZnO prismatic nanorods and their photocatalytic properties with multiple modes for dye degradation and hydrogen production. RSC Adv 8:6027–6038. https://doi.org/10.1039/C7RA12097D es_ES
dc.description.references Yadav S, Kumar N, Kumari V et al (2019) Photocatalytic degradation of Triclopyr, a persistent pesticide by ZnO/SnO2 nano-composities. Mater Today Proc 19:642–645. https://doi.org/10.1016/j.matpr.2019.07.746 es_ES
dc.description.references Yadav S, Mittal A, Sharma S et al (2020) Low temperature synthesized ZnO/Al2O3 nano-composites for photocatalytic and antibacterial applications. Semicond Sci Technol 35:055008. https://doi.org/10.1088/1361-6641/ab7776 es_ES
dc.description.references Yan Y, Al-Jassim MM, Wei S-H (2006) Doping of ZnO by group-IB elements. Appl Phys Lett 89:181912. https://doi.org/10.1063/1.2378404 es_ES
dc.description.references Yin X, Que W, Liao Y et al (2012) Ag–TiO2 nanocomposites with improved photocatalytic properties prepared by a low temperature process in polyethylene glycol. Colloids Surf Physicochem Eng Asp 410:153–158. https://doi.org/10.1016/j.colsurfa.2012.06.039 es_ES
dc.description.references Zhang X, Wang Y, Hou F et al (2017) Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres. Appl Surf Sci 391:476–483. https://doi.org/10.1016/j.apsusc.2016.06.109 es_ES
dc.description.references Zheng Y, Zheng L, Zhan Y et al (2007) Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg Chem 46:6980–6986. https://doi.org/10.1021/ic700688f es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem