- -

Engineered living biomaterials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Engineered living biomaterials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodrigo-Navarro, Aleixandre es_ES
dc.contributor.author Sankaran, Shrikrishnan es_ES
dc.contributor.author Dalby, Matthew J. es_ES
dc.contributor.author del Campo, Aránzazu es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.date.accessioned 2022-12-21T19:00:43Z
dc.date.available 2022-12-21T19:00:43Z
dc.date.issued 2021-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190867
dc.description.abstract [EN] Biomaterials have evolved from inert materials that lack interaction with the body to biologically active, instructive materials that host and provide signals to surrounding cells and tissues. Engineered living materials contain living cells (responsive function) and polymeric matrices (scaffolding function) and, thus, can be designed as active and response biomaterials. In this Review, we discuss engineered living materials that incorporate microorganisms as the living, bioactive component. Microorganisms can provide complex responses to environmental stimuli, and they can be genetically engineered to allow user control over responses and integration of numerous inputs. The engineered microorganisms can either generate their own matrix, such as in biofilms, or they can be incorporated in matrices using various technologies, such as coating, 3D printing, spinning and microencapsulation. We highlight biomedical applications of such engineered living materials, including biosensing, wound healing, stem-cell-based tissue engineering and drug delivery, and provide an outlook to the challenges and future applications of engineered living materials. es_ES
dc.description.sponsorship Support from EPSRC through a programme grant (EP/P001114/1) is acknowledged. M.S.-S. and M.J.D acknowledge support from a grant from the UK Regenerative Medicine Platform "Acellular/Smart Materials - 3D Architecture" (MR/R015651/1). S.S. and A.d.C. acknowledge support from the Deutsche Forschungsgemeinschaft's Collaborative Research Centre, SFB 1027 and the Leibniz Science Campus on Living Therapeutic Materials, LifeMat. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Reviews Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Engineered living biomaterials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41578-021-00350-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//SFB 1027/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EPSRC//EP%2FP001114%2F1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRMP//MR%2FR015651%2F1/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Rodrigo-Navarro, A.; Sankaran, S.; Dalby, MJ.; Del Campo, A.; Salmerón Sánchez, M. (2021). Engineered living biomaterials. Nature Reviews Materials. 6(12):1175-1190. https://doi.org/10.1038/s41578-021-00350-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41578-021-00350-8 es_ES
dc.description.upvformatpinicio 1175 es_ES
dc.description.upvformatpfin 1190 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2058-8437 es_ES
dc.relation.pasarela S\463075 es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder UK Regenerative Medicine Platform es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.description.references Marth, J. D. A unified vision of the building blocks of life. Nat. Cell Biol. 10, 1015–1015 (2008). es_ES
dc.description.references Rossi, E., Paroni, M. & Landini, P. Biofilm and motility in response to environmental and host-related signals in Gram negative opportunistic pathogens. J. Appl. Microbiol. 125, 1587–1602 (2018). es_ES
dc.description.references Yin, W., Wang, Y., Liu, L. & He, J. Biofilms: the microbial “protective clothing” in extreme environments. Int. J. Mol. Sci. 20, 3423 (2019). es_ES
dc.description.references Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307–315 (2016). es_ES
dc.description.references Nguyen, P. Q., Courchesne, N.-M. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, e1704847 (2018). es_ES
dc.description.references Gona, R. S. & Meyer, A. S. Engineered proteins and three-dimensional printing of living materials. MRS Bull. 45, 1034–1038 (2020). es_ES
dc.description.references Gilbert, C. & Ellis, T. Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth. Biol. 8, 1–15 (2019). Excellent review on applications of living biomaterials beyond medical applications. es_ES
dc.description.references Appiah, C. et al. Living materials herald a new era in soft robotics. Adv. Mater. 31, 1807747 (2019). es_ES
dc.description.references Rivera-Tarazona, L. K., Campbell, Z. T. & Ware, T. H. Stimuli-responsive engineered living materials. Soft Matter 17, 785–809 (2021). es_ES
dc.description.references Tang, T.-C. et al. Materials design by synthetic biology. Nat. Rev. Mater. 6, 332–350 (2021). es_ES
dc.description.references Branda, S. S., Vik, Å., Friedman, L. & Kolter, R. Biofilms: the matrix revisited. Trends Microbiol. 13, 20–26 (2005). es_ES
dc.description.references Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010). es_ES
dc.description.references Tolker-Nielsen, T. Biofilm development. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MB-0001-2014 (2015). es_ES
dc.description.references Liu, X. et al. 3D printing of living responsive materials and devices. Adv. Mater. 30, 1704821 (2018). 3D printing of living materials to implement logic gates using programmed bacteria in hydrogels. es_ES
dc.description.references Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014). es_ES
dc.description.references Gilman, J. & Love, J. Synthetic promoter design for new microbial chassis. Biochem. Soc. Trans. 44, 731–737 (2016). es_ES
dc.description.references Fierke, C. A. & Thompson, R. B. Fluorescence-based biosensing of zinc using carbonic anhydrase. Biometals 14, 205–222 (2001). es_ES
dc.description.references Zeng, H. H. et al. Real-time determination of picomolar free Cu(II) in seawater using a fluorescence-based fiber optic biosensor. Anal. Chem. 75, 6807–6812 (2003). es_ES
dc.description.references Begam, H., Nandi, S. K., Kundu, B. & Chanda, A. Strategies for delivering bone morphogenetic protein for bone healing. Mater. Sci. Eng. C. 70, 856–869 (2017). es_ES
dc.description.references Bally, L., Thabit, H. & Hovorka, R. Finding the right route for insulin delivery – an overview of implantable pump therapy. Expert Opin. Drug Deliv. 14, 1103–1111 (2017). es_ES
dc.description.references van Wamelen, D. J., Grigoriou, S., Chaudhuri, K. R. & Odin, P. Continuous drug delivery aiming continuous dopaminergic stimulation in Parkinson’s disease. J. Parkinsons. Dis. 8, S65–S72 (2018). es_ES
dc.description.references Batista, E. et al. Assessment of drug delivery devices. Biomed. Tech. 60, 347–357 (2015). es_ES
dc.description.references Hay, J. J. et al. Bacteria-based materials for stem cell engineering. Adv. Mater. 30, 1804310 (2018). Engineered bacteria that expresses fibronectin fragments and growth factors to support mesenchymal stem cell adhesion and differentiation. es_ES
dc.description.references González, L. M., Mukhitov, N. & Voigt, C. A. Resilient living materials built by printing bacterial spores. Nat. Chem. Biol. 16, 126–133 (2020). Highly resilient bacterial hydrogels containing Bacillus subtilis spores capable of biosensing and therapeutic functions are described in this report. es_ES
dc.description.references Lufton, M. et al. Living bacteria in thermoresponsive gel for treating fungal infections. Adv. Funct. Mater. 28, 1801581 (2018). es_ES
dc.description.references Praveschotinunt, P. et al. Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. Nat. Commun. 10, 5580 (2019). Engineered protein-based bacterial biofilms as therapeutic living materials capable of colonizing and promoting regeneration of intestinal tissues in colitis-induced mice. es_ES
dc.description.references An, B. et al. Programming living glue systems to perform autonomous mechanical repairs. Matter 3, 2080–2092 (2020). es_ES
dc.description.references Gerber, L. C., Koehler, F. M., Grass, R. N. & Stark, W. J. Incorporation of penicillin-producing fungi into living materials to provide chemically active and antibiotic-releasing surfaces. Angew. Chem. Int. Ed. 51, 11293–11296 (2012). es_ES
dc.description.references Sankaran, S. & del Campo, A. Optoregulated protein release from an engineered living material. Adv. Biosyst. 3, 1800312 (2019). es_ES
dc.description.references Sankaran, S., Becker, J., Wittmann, C. & del Campo, A. Optoregulated drug release from an engineered living material: self-replenishing drug depots for long-term, light-regulated delivery. Small 15, 1804717 (2019). Bacterial hydrogels have been developed for the localized, tunable and long-term release of an antimicrobial/antitumour drug, deoxyviolacein, in a manner that can be regulated by light. es_ES
dc.description.references Johnston, T. G. et al. Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation. Nat. Commun. 11, 563 (2020). es_ES
dc.description.references Schotte, L., Steidler, L., Vandekerckhove, J. & Remaut, E. Secretion of biologically active murine interleukin-10 by Lactococcus lactis. Enzym. Microb. Technol. 27, 761–765 (2000). es_ES
dc.description.references van der Hoek, S. A. et al. Engineering the yeast Saccharomyces cerevisiae for the production of L-(+)-ergothioneine. Front. Bioeng. Biotechnol. 7, 262 (2019). es_ES
dc.description.references Karkos, P. D., Leong, S. C., Karkos, C. D., Sivaji, N. & Assimakopoulos, D. A. Spirulina in clinical practice: evidence-based human applications. Evid. Based Complement. Altern. Med. 2011, 531053 (2011). es_ES
dc.description.references Sharifi-Rad, J. et al. Probiotics: versatile bioactive components in promoting human health. Medicina 56, 433 (2020). es_ES
dc.description.references Markowiak, P. & Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9, 1021 (2017). es_ES
dc.description.references Parvez, S., Malik, K. A., Ah Kang, S. & Kim, H.-Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100, 1171–1185 (2006). es_ES
dc.description.references Acosta, S. et al. Antifungal films based on starch-gelatin blend, containing essential oils. Food Hydrocoll. 61, 233–240 (2016). es_ES
dc.description.references Li, S. et al. Cassava starch/carboxymethylcellulose edible films embedded with lactic acid bacteria to extend the shelf life of banana. Carbohydr. Polym. 248, 116805 (2020). es_ES
dc.description.references De Prisco, A. & Mauriello, G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci. Technol. 48, 27–39 (2016). es_ES
dc.description.references Bourtoom, T. Edible films and coatings: characteristics and properties. Int. Food Res. J. 15, 237–248 (2008). es_ES
dc.description.references Rojas-Graü, M. A., Soliva-Fortuny, R. & Martín-Belloso, O. Edible coatings to incorporate active ingredients to fresh-cut fruits: a review. Trends Food Sci. Technol. 20, 438–447 (2009). es_ES
dc.description.references Valencia-Chamorro, S. A., Palou, L., del Río, M. A. & Pérez-Gago, M. B. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review. Crit. Rev. Food Sci. Nutr. 51, 872–900 (2011). es_ES
dc.description.references Corrales, M., Han, J. H. & Tauscher, B. Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch films. Int. J. Food Sci. Technol. 44, 425–433 (2009). es_ES
dc.description.references Tapia, M. S. et al. Use of alginate- and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocoll. 22, 1493–1503 (2008). es_ES
dc.description.references Suput, D., Lazic, V., Popovic, S. & Hromis, N. Edible films and coatings: Sources, properties and application. Food Feed. Res. 42, 11–22 (2015). es_ES
dc.description.references Ozyurt, V. H. & Ötles, S. Properties of probiotics and encapsulated probiotics in food. Acta Sci. Pol. Technol. Aliment. 13, 413–424 (2014). es_ES
dc.description.references Maxmen, A. Living therapeutics: Scientists genetically modify bacteria to deliver drugs. Nat. Med. 23, 5–7 (2017). es_ES
dc.description.references Vandenbroucke, K. et al. Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol. 3, 49–56 (2010). es_ES
dc.description.references Limaye, S. A. et al. Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy. Cancer 119, 4268–4276 (2013). es_ES
dc.description.references Lagenaur, L. A. et al. Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus. Mucosal Immunol. 4, 648–657 (2011). es_ES
dc.description.references US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT03751007 (2021). es_ES
dc.description.references US National Library of Medicine. Clinicaltrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02766023 (2020). es_ES
dc.description.references Flores Bueso, Y., Lehouritis, P. & Tangney, M. In situ biomolecule production by bacteria; a synthetic biology approach to medicine. J. Control. Rel. 275, 217–228 (2018). es_ES
dc.description.references Krámli, A. & Horváth, J. Microbiological oxidation of sterols. Nature 162, 619 (1948). es_ES
dc.description.references Lintner, C. J. & Liebig, H. J. v. Über die Reduktion des Furfurols durch Hefe bei der alkoholischen Gärung. Hoppe Seylers Z. Physiol. Chem. 72, 449–454 (1911). es_ES
dc.description.references Burkovski, A. (ed.) Corynebacterium Glutamicum: From Systems Biology to Biotechnological Applications (Caister Academic Press, 2015) es_ES
dc.description.references Lee, B. H. Fundamentals of Food Biotechnology (Wiley, 1996). es_ES
dc.description.references Young, A. L. The World Congress on Industrial Biotechnology and Bioprocessing. Environ. Sci. Pollut. Res. 11, 202 (2004). es_ES
dc.description.references Bučko, M. et al. Continuous testing system for Baeyer-Villiger biooxidation using recombinant Escherichia coli expressing cyclohexanone monooxygenase encapsulated in polyelectrolyte complex capsules. Enzym. Microb. Technol. 49, 284–288 (2011). es_ES
dc.description.references Edel, M., Horn, H. & Gescher, J. Biofilm systems as tools in biotechnological production. Appl. Microbiol. Biotechnol. 103, 5095–5103 (2019). es_ES
dc.description.references Cheng, K.-C., Demirci, A. & Catchmark, J. M. Advances in biofilm reactors for production of value-added products. Appl. Microbiol. Biotechnol. 87, 445–456 (2010). es_ES
dc.description.references Rudroff, F. Whole-cell based synthetic enzyme cascades — light and shadow of a promising technology. Curr. Opin. Chem. Biol. 49, 84–90 (2019). es_ES
dc.description.references Han, L., Zhao, Y., Cui, S. & Liang, B. Redesigning of microbial cell surface and its application to whole-cell biocatalysis and biosensors. Appl. Biochem. Biotechnol. 185, 396–418 (2018). es_ES
dc.description.references Rosano, G. L. & Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5, 172 (2014). es_ES
dc.description.references Park, M., Tsai, S.-L. & Chen, W. Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors 13, 5777–5795 (2013). es_ES
dc.description.references Metkar, S. K. & Girigoswami, K. Diagnostic biosensors in medicine – A review. Biocatal. Agric. Biotechnol. 17, 271–283 (2019). es_ES
dc.description.references Gui, Q., Lawson, T., Shan, S., Yan, L. & Liu, Y. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 17, 1623 (2017). es_ES
dc.description.references Liu, X. et al. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells. Proc. Natl Acad. Sci. USA 114, 2200–2205 (2017). es_ES
dc.description.references Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018). es_ES
dc.description.references Mora, C. A., Herzog, A. F., Raso, R. A. & Stark, W. J. Programmable living material containing reporter micro-organisms permits quantitative detection of oligosaccharides. Biomaterials 61, 1–9 (2015). es_ES
dc.description.references Schulz-Schönhagen, K., Lobsiger, N. & Stark, W. J. Continuous production of a shelf-stable living material as a biosensor platform. Adv. Mater. Technol. 4, 1900266 (2019). es_ES
dc.description.references Gilbert, C. et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat. Mater. 20, 691–700 (2021). Bacteria and yeast used for the production of bacterial cellulose-based engineered living materials with potential applications in biosensing and biocatalysis. es_ES
dc.description.references Lim, J. W., Ha, D., Lee, J., Lee, S. K. & Kim, T. Review of micro/nanotechnologies for microbial biosensors. Front. Bioeng. Biotechnol. 3, 61 (2015). es_ES
dc.description.references Hicks, M., Bachmann, T. T. & Wang, B. Synthetic biology enables programmable cell-based biosensors. ChemPhysChem 21, 132–144 (2020). es_ES
dc.description.references Saltepe, B., Kehribar, E. Ş., Su Yirmibeşogˇlu, S. S. & Şafak Şeker, U. Ö. Cellular biosensors with engineered genetic circuits. ACS Sens. 3, 13–26 (2018). es_ES
dc.description.references Prescott, S. L. et al. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ. J. 10, 29 (2017). es_ES
dc.description.references Vargason, A. M. & Anselmo, A. C. Clinical translation of microbe-based therapies: Current clinical landscape and preclinical outlook. Bioeng. Transl. Med. 3, 124–137 (2018). es_ES
dc.description.references Glinel, K., Behrens, A., Langer, R. S., Jaklenec, A. & Jonas, A. M. Nanofibrillar patches of commensal skin bacteria. Biomacromolecules 20, 102–108 (2019). es_ES
dc.description.references Nussbaumer, M. G. et al. Bootstrapped biocatalysis: biofilm-derived materials as reversibly functionalizable multienzyme surfaces. ChemCatChem 9, 4328–4333 (2017). es_ES
dc.description.references Tay, P. K. R., Nguyen, P. Q. & Joshi, N. S. A synthetic circuit for mercury bioremediation using self-assembling functional amyloids. ACS Synth. Biol. 6, 1841–1850 (2017). es_ES
dc.description.references Zhong, C. et al. Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nat. Nanotechnol. 9, 858–866 (2014). es_ES
dc.description.references Wang, Y. et al. Living materials fabricated via gradient mineralization of light-inducible biofilms. Nat. Chem. Biol. 17, 351–359 (2021). es_ES
dc.description.references Barnhart, M. M. & Chapman, M. R. Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006). es_ES
dc.description.references Pu, J. et al. Virus disinfection from environmental water sources using living engineered biofilm materials. Adv. Sci. 7, 1903558 (2020). es_ES
dc.description.references Huang, J. et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat. Chem. Biol. 15, 34–41 (2019). es_ES
dc.description.references Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011). es_ES
dc.description.references Oxford, J. T., Reeck, J. C. & Hardy, M. J. Extracellular matrix in development and disease. Int. J. Mol. Sci. 20, 205 (2019). es_ES
dc.description.references Zhang, J., Jensen, M. K. & Keasling, J. D. Development of biosensors and their application in metabolic engineering. Curr. Opin. Chem. Biol. 28, 1–8 (2015). es_ES
dc.description.references Saadeddin, A. et al. Functional living biointerphases. Adv. Healthc. Mater. 2, 1213–1218 (2013). es_ES
dc.description.references Hay, J. J. et al. Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation. Sci. Rep. 6, 21809 (2016). es_ES
dc.description.references Rodrigo-Navarro, A., Rico, P., Saadeddin, A., Garcia, A. J. & Salmeron-Sanchez, M. Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation. Sci. Rep. 4, 5849 (2014). es_ES
dc.description.references Mierau, I. & Kleerebezem, M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biotechnol. 68, 705–717 (2005). es_ES
dc.description.references Zollinger, A. J. & Smith, M. L. Fibronectin, the extracellular glue. Matrix Biol. 60–61, 27–37 (2017). es_ES
dc.description.references Sankaran, S., Zhao, S., Muth, C., Paez, J. & Del Campo, A. Toward light-regulated living biomaterials. Adv. Sci. 5, 1800383 (2018). Light-responsive living biointerfaces capable of adhesively interacting with mammalian cells and delivering proteins within their cytosol. es_ES
dc.description.references Bernhagen, D., De Laporte, L. & Timmerman, P. High-affinity RGD-knottin peptide as a new tool for rapid evaluation of the binding strength of unlabeled RGD-peptides to αvβ3, αvβ5, and α5β1 integrin receptors. Anal. Chem. 89, 5991–5997 (2017). es_ES
dc.description.references Kesik-Brodacka, M. Progress in biopharmaceutical development. Biotechnol. Appl. Biochem. 65, 306–322 (2018). es_ES
dc.description.references Cordaillat-Simmons, M., Rouanet, A. & Pot, B. Live biotherapeutic products: the importance of a defined regulatory framework. Exp. Mol. Med. 52, 1397–1406 (2020). es_ES
dc.description.references Al-Mujaini, A., Al-Kharusi, N., Thakral, A. & Wali, U. K. Bacterial keratitis: perspective on epidemiology, clinico-pathogenesis, diagnosis and treatment. Sultan Qaboos Univ. Med. J. 9, 184–195 (2009). es_ES
dc.description.references Cole, P. The damaging role of bacteria in chronic lung infection. J. Antimicrob. Chemother. 40, 5–10 (1997). es_ES
dc.description.references Ferreiro, A., Dantas, G. & Ciorba, M. A. Insights into how probiotics colonize the healthy human gut. Gastroenterology 156, 820–822 (2019). es_ES
dc.description.references Guo, S. et al. Engineered living materials based on adhesin-mediated trapping of programmable cells. ACS Synth. Biol. 9, 475–485 (2020). Interesting approach to harness the ability of bacterial adhesins to immobilize cells in synthetic matrices. es_ES
dc.description.references Park, J. K. & Chang, H. N. Microencapsulation of microbial cells. Biotechnol. Adv. 18, 303–319 (2000). es_ES
dc.description.references de Vos, P. et al. Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 30, 2559–2570 (2009). es_ES
dc.description.references Ramakrishna, S. V. & Prakasham, R. S. Microbial fermentations with immobilized cells. Curr. Sci. 77, 87–100 (1999). es_ES
dc.description.references Jung, I. et al. A dip-stick type biosensor using bioluminescent bacteria encapsulated in color-coded alginate microbeads for detection of water toxicity. Analyst 139, 4696–4701 (2014). es_ES
dc.description.references Avnir, D., Coradin, T., Lev, O. & Livage, J. Recent bio-applications of sol–gel materials. J. Mater. Chem. 16, 1013–1030 (2006). es_ES
dc.description.references Xu, L. et al. Encapsulation of Pannonibacter phragmitetus LSSE-09 in alginate–carboxymethyl cellulose capsules for reduction of hexavalent chromium under alkaline conditions. J. Ind. Microbiol. Biotechnol. 38, 1709–1718 (2011). es_ES
dc.description.references Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: A common cause of persistent infections. Science 284, 1318–1322 (1999). es_ES
dc.description.references Xu, H. et al. Characterizing pilus-mediated adhesion of biofilm-forming E. coli to chemically diverse surfaces using atomic force microscopy. Langmuir 29, 3000–3011 (2013). es_ES
dc.description.references Wong, J. X., Gonzalez-Miro, M., Sutherland-Smith, A. J. & Rehm, B. H. A. Covalent functionalization of bioengineered polyhydroxyalkanoate spheres directed by specific protein-protein interactions. Front. Bioeng. Biotechnol. 8, 44 (2020). es_ES
dc.description.references Asenjo, J. A. Bioreactor System Design (CRC Press, 1994). es_ES
dc.description.references Simões, M., Simões, L. C. & Vieira, M. J. A review of current and emergent biofilm control strategies. LWT Food Sci. Technol. 43, 573–583 (2010). es_ES
dc.description.references Teughels, W., Van Assche, N., Sliepen, I. & Quirynen, M. Effect of material characteristics and/or surface topography on biofilm development. Clin. Oral. Implant. Res. 17, 68–81 (2006). es_ES
dc.description.references Scheuerman, T. R., Camper, A. K. & Hamilton, M. A. Effects of substratum topography on bacterial adhesion. J. Colloid Interface Sci. 208, 23–33 (1998). es_ES
dc.description.references Garrett, T. R., Bhakoo, M. & Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 18, 1049–1056 (2008). es_ES
dc.description.references Hori, K. & Matsumoto, S. Bacterial adhesion: From mechanism to control. Biochem. Eng. J. 48, 424–434 (2010). es_ES
dc.description.references Rashid, H. The effect of surface roughness on ceramics used in dentistry: A review of literature. Eur. J. Dent. 08, 571–579 (2014). es_ES
dc.description.references Fernandez-Moure, J. S., Mydlowska, A., Shin, C., Vella, M. & Kaplan, L. J. Nanometric considerations in biofilm formation. Surg. Infect. 20, 167–173 (2019). es_ES
dc.description.references Sarao, L. K. & Arora, M. Probiotics, prebiotics, and microencapsulation: a review. Crit. Rev. Food Sci. Nutr. 57, 344–371 (2017). es_ES
dc.description.references Martín, M. J., Lara-Villoslada, F., Ruiz, M. A. & Morales, M. E. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innov. Food Sci. Emerg. Technol. 27, 15–25 (2015). es_ES
dc.description.references Mohamed, M. G. A. et al. Microfluidics-based fabrication of cell-laden microgels. Biomicrofluidics 14, 021501 (2020). es_ES
dc.description.references Kupikowska-Stobba, B. & Lewińska, D. Polymer microcapsules and microbeads as cell carriers for in vivo biomedical applications. Biomater. Sci. 8, 1536–1574 (2020). es_ES
dc.description.references Li, P., Müller, M., Chang, M. W., Frettlöh, M. & Schönherr, H. Encapsulation of autoinducer sensing reporter bacteria in reinforced alginate-based microbeads. ACS Appl. Mater. Interfaces 9, 22321–22331 (2017). es_ES
dc.description.references Witte, K., Rodrigo-Navarro, A. & Salmeron-Sanchez, M. Bacteria-laden microgels as autonomous three-dimensional environments for stem cell engineering. Mater. Today Bio. 2, 100011 (2019). es_ES
dc.description.references Balusamy, B., Sarioglu, O. F., Senthamizhan, A. & Uyar, T. Rational design and development of electrospun nanofibrous biohybrid composites. ACS Appl. Bio Mater. 2, 3128–3143 (2019). es_ES
dc.description.references Christian, K. et al. Living composites of bacteria and polymers as biomimetic films for metal sequestration and bioremediation. Macromol. Biosci. 15, 1052–1059 (2015). es_ES
dc.description.references Abdali, Z., Logsetty, S. & Liu, S. Bacteria-responsive single and core–shell nanofibrous membranes based on polycaprolactone/poly(ethylene succinate) for on-demand release of biocides. ACS Omega 4, 4063–4070 (2019). es_ES
dc.description.references Kaiser, P. et al. Electrogenic single-species biocomposites as anodes for microbial fuel cells. Macromol. Biosci. 17, 1600442 (2017). es_ES
dc.description.references Kaiser, P., Reich, S., Greiner, A. & Freitag, R. Preparation of biocomposite microfibers ready for processing into biologically active textile fabrics for bioremediation. Macromol. Biosci. 18, 1800046 (2018). es_ES
dc.description.references Liu, Y., Rafailovich, M. H., Malal, R., Cohn, D. & Chidambaram, D. Engineering of bio-hybrid materials by electrospinning polymer-microbe fibers. Proc. Natl Acad. Sci. USA 106, 14201–14206 (2009). es_ES
dc.description.references Letnik, I. et al. Living composites of electrospun yeast cells for bioremediation and ethanol production. Biomacromolecules 16, 3322–3328 (2015). es_ES
dc.description.references Reich, S. et al. High-temperature spray-dried polymer/bacteria microparticles for electrospinning of composite nonwovens. Macromol. Biosci. 19, 1800356 (2019). es_ES
dc.description.references Xie, S. et al. Genetically engineering of Escherichia coli and immobilization on electrospun fibers for drug delivery purposes. J. Mater. Chem. B 4, 6820–6829 (2016). es_ES
dc.description.references de Morais, M. G. et al. Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresour. Technol. 101, 2872–2876 (2010). es_ES
dc.description.references Kim, S. H., Shin, C., Min, S. K., Jung, S.-M. & Shin, H. S. In vitro evaluation of the effects of electrospun PCL nanofiber mats containing the microalgae Spirulina (Arthrospira) extract on primary astrocytes. Colloids Surf. B Biointerfaces 90, 113–118 (2012). es_ES
dc.description.references Cha, B. G. et al. Structural characteristics and biological performance of silk fibroin nanofiber containing microalgae spirulina extract. Biopolymers 101, 307–318 (2014). es_ES
dc.description.references Schaffner, M., Rühs, P. A., Coulter, F., Kilcher, S. & Studart, A. R. 3D printing of bacteria into functional complex materials. Sci. Adv. 3, eaao6804 (2017). 3D bacteria-printing platform for the creation of functional materials by embedding bacteria into a functionalized bioink. es_ES
dc.description.references Schmieden, D. T. et al. Printing of patterned, engineered E. coli biofilms with a low-cost 3D printer. ACS Synth. Biol. 7, 1328–1337 (2018). es_ES
dc.description.references Qian, F. et al. Direct writing of tunable living inks for bioprocess intensification. Nano Lett. 19, 5829–5835 (2019). es_ES
dc.description.references Joshi, S., Cook, E. & Mannoor, M. S. Bacterial nanobionics via 3D printing. Nano Lett. 18, 7448–7456 (2018). es_ES
dc.description.references Lehner, B. A. E., Schmieden, D. T. & Meyer, A. S. A straightforward approach for 3D bacterial printing. ACS Synth. Biol. 6, 1124–1130 (2017). es_ES
dc.description.references Spiesz, E. M. et al. Three-dimensional patterning of engineered biofilms with a do-it-yourself bioprinter. J. Vis. Exp. https://doi.org/10.3791/59477 (2019). es_ES
dc.description.references Connell, J. L., Ritschdorff, E. T., Whiteley, M. & Shear, J. B. 3D printing of microscopic bacterial communities. Proc. Natl Acad. Sci. USA 110, 18380–18385 (2013). es_ES
dc.description.references Kandemir, N., Vollmer, W., Jakubovics, N. S. & Chen, J. Mechanical interactions between bacteria and hydrogels. Sci. Rep. 8, 10893 (2018). es_ES
dc.description.references Stewart, E. J., Ganesan, M., Younger, J. G. & Solomon, M. J. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly. Sci. Rep. 5, 13081 (2015). es_ES
dc.description.references Chen, X. & Stewart, P. S. Chlorine penetration into artificial biofilm is limited by a reaction–diffusion interaction. Environ. Sci. Technol. 30, 2078–2083 (1996). es_ES
dc.description.references Eun, Y.-J., Utada, A. S., Copeland, M. F., Takeuchi, S. & Weibel, D. B. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem. Biol. 6, 260–266 (2011). es_ES
dc.description.references Pabst, B., Pitts, B., Lauchnor, E. & Stewart, P. S. Gel-entrapped Staphylococcus aureus bacteria as models of biofilm infection exhibit growth in dense aggregates, oxygen limitation, antibiotic tolerance, and heterogeneous gene expression. Antimicrob. Agents Chemother. 60, 6294–6301 (2016). es_ES
dc.description.references Priks, H. et al. Physical confinement impacts cellular phenotypes within living materials. ACS Appl. Bio Mater. 3, 4273–4281 (2020). es_ES
dc.description.references Johnston, T. G. et al. Cell-laden hydrogels for multikingdom 3D printing. Macromol. Biosci. 20, 2000121 (2020). es_ES
dc.description.references Williams, D. F. On the mechanisms of biocompatibility. Biomaterials 29, 2941–2953 (2008). es_ES
dc.description.references Williams, D. in Bio-Implant Interface (eds Ellingsen, J. E. & Lyngstadaas, S. P.) (CRC Press, 2003) es_ES
dc.description.references U.S. Food and Drug Administration. Use of International Standard ISO-10993, ‘Biological Evaluation of Medical Devices Part 1: Evaluation and Testing’ (blue book memo) (International Standards Organization, 2018). es_ES
dc.description.references Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008). es_ES
dc.description.references Levine, M. M., Barry, E. M. & Chen, W. H. A roadmap for enterotoxigenic Escherichia coli vaccine development based on volunteer challenge studies. Hum. Vaccin. Immunother. 15, 1357–1378 (2019). es_ES
dc.description.references Wang, J. et al. Intranasal administration with recombinant Bacillus subtilis induces strong mucosal immune responses against pseudorabies. Microb. Cell Fact. 18, 103 (2019). es_ES
dc.description.references Guo, M. et al. Construction of a recombinant Lactococcus lactis strain expressing a variant porcine epidemic diarrhea virus S1 gene and its immunogenicity analysis in mice. Viral Immunol. 32, 144–150 (2019). es_ES
dc.description.references Narvhus, J. A. & Axelsson, L. in Encyclopedia of Food Sciences and Nutrition 3465–3472 (Elsevier, 2003). es_ES
dc.description.references Wyszyńska, A., Kobierecka, P., Bardowski, J. & Jagusztyn-Krynicka, E. K. Lactic acid bacteria — 20 years exploring their potential as live vectors for mucosal vaccination. Appl. Microbiol. Biotechnol. 99, 2967–2977 (2015). es_ES
dc.description.references Cook, D. P., Gysemans, C. & Mathieu, C. Lactococcus lactis as a versatile vehicle for tolerogenic immunotherapy. Front. Immunol. 8, 1961 (2018). es_ES
dc.description.references Bermúdez-Humarán, L. G., Kharrat, P., Chatel, J.-M. M. & Langella, P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb. Cell Fact. 10, S4 (2011). es_ES
dc.description.references Kaper, J. B., Nataro, J. P. & Mobley, H. L. T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004). es_ES
dc.description.references Daegelen, P., Studier, F. W., Lenski, R. E., Cure, S. & Kim, J. F. Tracing ancestors and relatives of Escherichia coli B, and the derivation of B Strains REL606 and BL21(DE3). J. Mol. Biol. 394, 634–643 (2009). es_ES
dc.description.references Archer, C. T. et al. The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 12, 9 (2011). es_ES
dc.description.references Brzuszkiewicz, E. et al. Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC). Arch. Microbiol. 193, 883–891 (2011). es_ES
dc.description.references Morschhäuser, J. et al. Evolution of microbial pathogens. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 355, 695–704 (2000). es_ES
dc.description.references Liao, M. J., Din, M. O., Tsimring, L. & Hasty, J. Rock-paper-scissors: Engineered population dynamics increase genetic stability. Science 365, 1045–1049 (2019). es_ES
dc.description.references Bull, J. J. & Barrick, J. E. Arresting evolution. Trends Genet. 33, 910–920 (2017). es_ES
dc.description.references Geng, P., Leonard, S. P., Mishler, D. M. & Barrick, J. E. Synthetic genome defenses against selfish DNA elements stabilize engineered bacteria against evolutionary failure. ACS Synth. Biol. 8, 521–531 (2019). es_ES
dc.description.references Plavec, T. V. & Berlec, A. Safety aspects of genetically modified lactic acid bacteria. Microorganisms 8, 297 (2020). es_ES
dc.description.references Steidler, L. et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 21, 785–789 (2003). es_ES
dc.description.references Rovner, A. J. et al. Recoded organisms engineered to depend on synthetic amino acids. Nature 518, 89–93 (2015). es_ES
dc.description.references Molina, L., Ramos, C., Ronchel, M.-C., Molin, S. & Ramos, J. L. Construction of an efficient biologically contained Pseudomonas putida strain and its survival in outdoor assays. Appl. Environ. Microbiol. 64, 2072–2078 (1998). es_ES
dc.description.references Li, Q. & Wu, Y.-J. A fluorescent, genetically engineered microorganism that degrades organophosphates and commits suicide when required. Appl. Microbiol. Biotechnol. 82, 749–756 (2009). es_ES
dc.description.references García, J. L. & Díaz, E. Plasmids as tools for containment. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.PLAS-0011-2013 (2014). es_ES
dc.description.references Piñero-Lambea, C., Ruano-Gallego, D. & Fernández, L. Á. Engineered bacteria as therapeutic agents. Curr. Opin. Biotechnol. 35, 94–102 (2015). es_ES
dc.description.references Marteau, P. R. Probiotics in clinical conditions. Clin. Rev. Allergy Immunol. 22, 255–273 (2002). es_ES
dc.description.references D’Souza, A. L., Rajkumar, C., Cooke, J. & Bulpitt, C. J. Probiotics in prevention of antibiotic associated diarrhoea: meta-analysis. BMJ 324, 1361 (2002). es_ES
dc.description.references Allen, S. J., Martinez, E. G., Gregorio, G. V. & Dans, L. F. Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD003048.pub3 (2010). es_ES
dc.description.references Gionchetti, P. et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: A double-blind, placebo-controlled trial. Gastroenterology 119, 305–309 (2000). es_ES
dc.description.references Weizman, Z., Asli, G. & Alsheikh, A. Effect of a probiotic infant formula on infections in child care centers: comparison of two probiotic agents. Pediatrics 115, 5–9 (2005). es_ES
dc.description.references Kalliomäki, M. et al. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357, 1076–1079 (2001). es_ES
dc.description.references Rosenfeldt, V. et al. Effect of probiotic Lactobacillus strains in children with atopic dermatitis. J. Allergy Clin. Immunol. 111, 389–395 (2003). es_ES
dc.description.references Chahwan, B. et al. Gut feelings: A randomised, triple-blind, placebo-controlled trial of probiotics for depressive symptoms. J. Affect. Disord. 253, 317–326 (2019). es_ES
dc.description.references Samonin, V. V. & Elikova, E. E. A study of the adsorption of bacterial cells on porous materials. Microbiology 73, 696–701 (2004). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem