- -

WYPiWYG hyperelasticity for isotropic, compressible materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

WYPiWYG hyperelasticity for isotropic, compressible materials

Mostrar el registro completo del ítem

Crespo, J.; Latorre, M.; Montáns, FJ. (2017). WYPiWYG hyperelasticity for isotropic, compressible materials. Computational Mechanics. 59(1):73-92. https://doi.org/10.1007/s00466-016-1335-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/191441

Ficheros en el ítem

Metadatos del ítem

Título: WYPiWYG hyperelasticity for isotropic, compressible materials
Autor: Crespo, José Latorre, Marcos Montáns, Francisco Javier
Fecha difusión:
Resumen:
[EN] Nowadays the most common approach to model elastic behavior at large strains is through hyperelasticity. Hyperelastic models usually specify the shape of the stored energy function. This shape is modulated by some ...[+]
Palabras clave: Hyperelasticity , WYPIWYG hyperelasticity , Soft materials , Polymers , Biological tissues
Derechos de uso: Reserva de todos los derechos
Fuente:
Computational Mechanics. (issn: 0178-7675 )
DOI: 10.1007/s00466-016-1335-6
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00466-016-1335-6
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2015-69801-R/ES/MODELADO Y SIMULACION DEL COMPORTAMIENTO MECANICO DE MATERIALES BLANDOS ANISOTROPOS EN GRANDES DEFORMACIONES/
info:eu-repo/grantAgreement/MECD//PRX15%2F00065/
info:eu-repo/grantAgreement/MINECO//DPI2011-26635//Modelado computacional de la termo-elasto-viscoplasticidad en grandes deformaciones/
info:eu-repo/grantAgreement/MINECO//DPI2015-69801-R//Modelado y simulación del comportamiento mecánico de materiales blandos anisótropos en grandes deformaciones/
Agradecimientos:
Partial financial support for this work has been given by Grants DPI2011-26635 and DPI2015-69801-R from the Direccion General de Proyectos de Investigacion of the Ministerio de Economia y Competitividad of Spain. F. J. ...[+]
Tipo: Artículo

References

Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. CRC Press, Boca Ratón

Ward IM, Hadley DW (1993) An Introduction to the mechanical properties of solid polymers. Wiley, Chichester

Ogden RW (1997) Nonlinear elastic deformations. Dover, New York [+]
Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. CRC Press, Boca Ratón

Ward IM, Hadley DW (1993) An Introduction to the mechanical properties of solid polymers. Wiley, Chichester

Ogden RW (1997) Nonlinear elastic deformations. Dover, New York

Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, Chichester

Humphrey JD (2013) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York

Fung YC (1993) A first course in continuum mechanics. Prentice-Hall, New Jersey

Twizell EH, Ogden RW (1983) Non-linear optimization of the material constants in Ogden’s stress-deformation function for incompressinle isotropic elastic materials. J Aust Math Soc B 24(04):424–434

Ogden RW, Saccomandi G, Sgura I (2004) Fitting hyperelastic models to experimental data. Comput Mech 34(6):484–502

Kakavas PA (2000) A new development of the strain energy function for hyperelastic materials using a logarithmic strain approach. J Appl Polym Sci 77:660–672

Pancheri FQ, Dorfmann L (2014) Strain-controlled biaxial tension of natural rubber: new experimental data. Rubber Chem Technol 87(1):120–138

Palmieri G, Sasso M, Chiappini G, Amodio D (2009) Mullins effect characterization of elastomers by multi-axial cyclic tests and optical experimental methods. Mech Mater 41(9):1059–1067

Urayama K (2006) An experimentalist’s view of the physics of rubber elasticity. J Polym Sci Polym Phys 44:3440–3444

Khajehsaeid H, Arghavani J, Naghdabadi R (2013) A hyperelastic constitutive model for rubber-like materials. Eur J Mech A Solid 38:144–151

Lopez-Pamies O (2010) A new $$I_{1}$$ I 1 -based hyperelastic model for rubber elastic materials. CR Mech 338(1):3–11

Maeda N, Fujikawa M, Makabe C, Yamabe J, Kodama Y, Koishi M (2015) Performance evaluation of various hyperelastic constitutive models of rubbers. In: Marvalova B, Petrikova I (eds) Constitutive models for rubbers IX. CRC Press, Boca Raton, pp 271–277

Steinmann P, Hossain M, Possart G (2012) Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Arch Appl Mech 82:1183–1217

Bechir H, Chevalier L, Chaouche M, Boufala K (2006) Hyperelastic constitutive model for rubber-like materials based on the first Seth strain measures invariant. Eur J Mech A Solid 25(1):110–124

Gendy AS, Saleeb AF (2000) Nonlinear material parameter estimation for characterizing hyperelastic large strain models. Comput Mech 25(1):66–77

Stumpf PT, Marczak RJ (2010) Optimization of constitutive parameters for hyperelastic models satisfying the Baker-Ericksen inequalities. In: Dvorkin E, Goldschmit M, Storti M (eds) Mecanica computational XXIX. Asociación Argentina de Mecánica Computacional, Buenos Aires, pp 2901–2916

Bradley GL, Chang PC, McKenna GB (2001) Rubber modeling using uniaxial test data. J Appl Polym Sci 81(4):837–848

Hariharaputhiran H, Saravanan U (2016) A new set of biaxial and uniaxial experiments on vulcanized rubber and attempts at modeling it using classical hyperelastic models. Mech Mater 92:211–222

Mansouri MR, Darijani H (2014) Constitutive modelling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. Int J Solid Struct 51:4316–4326

Moerman KM, Simms CK, Nagel T (2016) Control of tension-compression asymmetry in Ogden hyperelasticity with application to soft tissue modelling. J Mech Beh Biomed Mater 56:218–228

Holzapfel GA (2006) Determination of material models for arterial walls from uniaxial extension tests and histological structure. J Theor Biol 238(2):290–302

Li D, Robertson AM (2009) A structural multi-mechanism constitutive equation for cerebral arterial tissue. Int J Solid Struct 46:2920–2928

Shearer T (2015) A new strain energy function for the hyperelastic modelling of ligaments and tendons based on fascicle microstructure. J Biomech 48(2):290–297

Holzapfel GA, Niestrawska JA, Ogden RW, Reinisch AJ, Schriefl AJ (2015) Modelling non-symmetric collagen fiber dispersion in arterial walls. J R Soc Interface 12:20150188

Itskov M, Aksel N (2004) A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int J Solid Struct 41(14):3833–3848

Angeli S, Panayiotou C, Psimolophitis E, Nicolaou M, Constantinides C (2015) Uniaxial stress-strain characteristics of elastomeric membranes: theoretical considerations, computational simulations, and experimental validation. Mech Adv Mater Struct 22(12):996–1006

Chen H, Zhao X, Lu X, Kassab GS (2016) Microstructure-based constitutive models for coronary artery adventitia. In: Kassab GS, Sacks MS (eds) Structure-based mechanics of tissues and organs. Springer, New York, pp 225–248

Pierce DM, Maier F, Weisbecker H, Viertler C, Verbrugghe P, Famaey N, Holzapfel GA (2015) Human thoracic and abdominal aortic aneurysmal tissues: damage experiments, statistical analysis and constitutive modeling. J Mech Beh Biomed Mater 41:92–107

Cooney GM, Moerman KM, Takaza M, Winter DC, Simms CK (2015) Uniaxial and biaxial mechanical properties of porcine linea alba. J Mech Beh Biomed Mater 41:68–82

Santamaría VA, Siret O, Badel P, Guerin G, Novacek V, Turquier F, Avril S (2015) Material model calibration from planar tension tests on porcine linea alba. J Mech Beh Biomed Mater 43:26–34

Sacks MS (2003) Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng 125(2):280–287

Natali AN, Carniel EL, Pavan PG, Dario P, Izzo I (2006) Hyperelastic models for the analysis of soft tissue mechanics: definition of constitutive parameters. In: Biomedical Robotics and Biomechatronics, IEEE, pp 188–191

Tricerri P, Dedè L, Gambaruto A, Quarteroni A, Sequeira A (2016) A numerical study of isotropic and anisotropic constitutive models with relevance to healthy and unhealthy cerebral arterial tissues. Int J Eng Sci 101:126–155

Cortes DH, Elliott DM (2016) Modeling of collagenous tissues using distributed fiber orientations. In: Kassab GS, Sacks MS (eds) Structure-based mechanics of tissues and organs. Springer, New York, pp 15–40

Gasser TC (2016) Histomechanical modeling of the wall of abdominal aortic aneurysm. In: Kassab GS, Sacks MS (eds) Structure-based mechanics of tissues and organs. Springer, New York, pp 57–78

Kamenskiy AV, Pipinos II, Dzenis YA, Phillips NY, Desyatova AS, Kitson J, Bowen R, MacTaggart JN (2015) Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries. Acta Biomater 11:304–313

Lee LC, Wenk J, Klepach D, Kassab GS, Guccione JM (2016) Structural-basedmodels of ventricular myocardium. In: Kassab GS, Sacks MS (eds) Structure-based mechanics of tissues and organs. Springer, New York, pp 249–264

Fehervary H, Smoljkić M, Sloten JV, Famaey N (2016) Planar biaxial testing of soft biological tissue using rakes: a critical analysis of protocol and fitting process. J Mech Beh Biomed Mater 61:135–151

Valanis KC, Landel RF (1967) The stored energy of a hyperelastic material in terms of the extension ratios. J Appl Phys 38:2997

Sussman T, Bathe KJ (2009) A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data. Commun Num Meth Eng 25(1):53–63

Kearsley EA, Zapas LJ (1980) Some methods of measurement of an elastic strain energy function of the valanis-landel type. J Rheol 24:483

ADINA Theory and Modelling Guide (2012) ARD 12–8 (2012). ADINA R&D, Watertown

Latorre M, Montáns FJ (2013) Extension of the Sussman-Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comput Struct 122:13–26

Latorre M, Montáns FJ (2014) What-you-prescribe-is-what-you-get orthotropic hyperelasticity. Comput Mech 53(6):1279–1298

Latorre M, Montáns FJ (2014) On the interpretation of the logarithmic strain tensor in an arbitrary system of representation. Int J Solid Struct 51(7):1507–1515

Fiala Z (2015) Discussion of “ On the interpretation of the logarithmic strain tensor in an arbitrary system of representation” by M. Latorre and F.J. Montáns. Int J Solid Struct 56—-57:290–291

Latorre M, Montáns FJ (2015) Response to Fiala’s comments on “On the interpretation of the logarithmic strain tensor in an arbitrary system of representation”. Int J Solid Struct 56–57:292

Neff P, Eidel B, Martin RJ (2015) Geometry of logarithmic strain measures in solid mechanics. arXiv:1505.02203 [MathDG]

Latorre M, Montáns FJ (2015) Anisotropic finite strain viscoelasticity based on the Sidoroff multiplicative decomposition and logarithmic strains. Comput Mech 56:503–531

Latorre M, Montáns FJ (2016) Fully anisotropic finite strain viscoelasticity based on a reverse multiplicative decomposition and logarithmic strains. Comput Struct 163:56–70

Miñano M, Montáns FJ (2015) A new approach to modeling isotropic damage for Mullins effect in hyperelastic materials. Int J Solid Struct 67–68:272–282

Latorre M, De Rosa E, Montáns FJ (2016) Understanding the need of the compression branch to characterize hyperelastic materials. Under review

Latorre M, Romero X, Montáns FJ (2016) The relevance of transverse deformation effects in modeling soft biological tissues. Int J Solid Struct 99:57–70

Romero X, Latorre M, Montáns FJ (2016) Determination of the WYPIWYG strain energy density of skin through finite element analysis of the experiments on circular specimens. Under review

Bower AF (2009) Applied mechanics of solids. CRC Press, Boca Ratón

Ogden RW (1972) Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. P R Soc London A Math 326(1567):565–584

Ogden RW (1973) Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Ruber Chem Technol 46(2):398–416

Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11:582–592

Hartmann S, Neff P (2003) Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int J Solid Struct 40(11):2767–2791

Gent AN (1996) A new constitutive relation for rubber. Rubber Chem Technol 69(1):59–61

Blatz PJ, Ko WL (1962) Application of finite elastic theory to the deformation of rubbery materials. T Soc Rheol 6:223–251

Latorre M, Montáns FJ (2015) Material-symmetries congruency in transversely isotropic and orthotropic hyperelastic materials. Eur J Mech A Solid 53:99–106

Latorre M, Montáns FJ (2016) Stress and strain mapping tensors and general work-conjugacy in large strain continuum mechanics. Appl Math Model 40(5–6):3938–3950

Dierckx P (1993) Curve and surface fitting with splines. Oxford University Press, Oxford

Eubank RL (1999) Nonparametric regression and spline smoothing. Marcel Dekker, New York

Weinert HL (2013) Fast compact algorithms and software for spline smoothing. Springer, New York

Latorre M, Montáns FJ (2017) WYPIWYG hyperelasticity: splines are fine and smoothing is soothing (forthcoming)

Caminero MA, Montáns FJ, Bathe KJ (2011) Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures. Comput Struct 89(11):826–843

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem