- -

WYPiWYG hyperelasticity for isotropic, compressible materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

WYPiWYG hyperelasticity for isotropic, compressible materials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Crespo, José es_ES
dc.contributor.author Latorre, Marcos es_ES
dc.contributor.author Montáns, Francisco Javier es_ES
dc.date.accessioned 2023-01-23T19:00:33Z
dc.date.available 2023-01-23T19:00:33Z
dc.date.issued 2017-01 es_ES
dc.identifier.issn 0178-7675 es_ES
dc.identifier.uri http://hdl.handle.net/10251/191441
dc.description.abstract [EN] Nowadays the most common approach to model elastic behavior at large strains is through hyperelasticity. Hyperelastic models usually specify the shape of the stored energy function. This shape is modulated by some material parameters that are computed so the predicted stresses best fit the experimental data. Many stored energy functions have been proposed in the literature for isotropic and anisotropic materials, either compressible or incompressible. What-You-Prescribe-Is-What-You-Get (WYPIWYG) formulations present a different approach which may be considered an extension of the infinitesimal framework. The shape of the stored energy is not given beforehand but computed numerically from experimental data solving the equilibrium equations. The models exactly fit the experimental data without any material parameter. WYPIWYG procedures have comparable efficiency in finite element procedures as classical hyperelasticity. In this work we present a WYPIWYG numerical procedure for compressible isotropic materials and we motivate the formulation through an equivalent infinitesimal model. es_ES
dc.description.sponsorship Partial financial support for this work has been given by Grants DPI2011-26635 and DPI2015-69801-R from the Direccion General de Proyectos de Investigacion of the Ministerio de Economia y Competitividad of Spain. F. J. Montans also acknowledges the support of the Department of Mechanical and Aerospace Engineering of University of Florida during the sabbatical period in which this paper was finished and that of the Ministerio de Educacion, Cultura y Deporte of Spain for the financial support for that stay under Grant PRX15/00065 es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Computational Mechanics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hyperelasticity es_ES
dc.subject WYPIWYG hyperelasticity es_ES
dc.subject Soft materials es_ES
dc.subject Polymers es_ES
dc.subject Biological tissues es_ES
dc.title WYPiWYG hyperelasticity for isotropic, compressible materials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00466-016-1335-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-69801-R/ES/MODELADO Y SIMULACION DEL COMPORTAMIENTO MECANICO DE MATERIALES BLANDOS ANISOTROPOS EN GRANDES DEFORMACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//PRX15%2F00065/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2011-26635//Modelado computacional de la termo-elasto-viscoplasticidad en grandes deformaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-69801-R//Modelado y simulación del comportamiento mecánico de materiales blandos anisótropos en grandes deformaciones/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Crespo, J.; Latorre, M.; Montáns, FJ. (2017). WYPiWYG hyperelasticity for isotropic, compressible materials. Computational Mechanics. 59(1):73-92. https://doi.org/10.1007/s00466-016-1335-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00466-016-1335-6 es_ES
dc.description.upvformatpinicio 73 es_ES
dc.description.upvformatpfin 92 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\467485 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. CRC Press, Boca Ratón es_ES
dc.description.references Ward IM, Hadley DW (1993) An Introduction to the mechanical properties of solid polymers. Wiley, Chichester es_ES
dc.description.references Ogden RW (1997) Nonlinear elastic deformations. Dover, New York es_ES
dc.description.references Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, Chichester es_ES
dc.description.references Humphrey JD (2013) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York es_ES
dc.description.references Fung YC (1993) A first course in continuum mechanics. Prentice-Hall, New Jersey es_ES
dc.description.references Twizell EH, Ogden RW (1983) Non-linear optimization of the material constants in Ogden’s stress-deformation function for incompressinle isotropic elastic materials. J Aust Math Soc B 24(04):424–434 es_ES
dc.description.references Ogden RW, Saccomandi G, Sgura I (2004) Fitting hyperelastic models to experimental data. Comput Mech 34(6):484–502 es_ES
dc.description.references Kakavas PA (2000) A new development of the strain energy function for hyperelastic materials using a logarithmic strain approach. J Appl Polym Sci 77:660–672 es_ES
dc.description.references Pancheri FQ, Dorfmann L (2014) Strain-controlled biaxial tension of natural rubber: new experimental data. Rubber Chem Technol 87(1):120–138 es_ES
dc.description.references Palmieri G, Sasso M, Chiappini G, Amodio D (2009) Mullins effect characterization of elastomers by multi-axial cyclic tests and optical experimental methods. Mech Mater 41(9):1059–1067 es_ES
dc.description.references Urayama K (2006) An experimentalist’s view of the physics of rubber elasticity. J Polym Sci Polym Phys 44:3440–3444 es_ES
dc.description.references Khajehsaeid H, Arghavani J, Naghdabadi R (2013) A hyperelastic constitutive model for rubber-like materials. Eur J Mech A Solid 38:144–151 es_ES
dc.description.references Lopez-Pamies O (2010) A new $$I_{1}$$ I 1 -based hyperelastic model for rubber elastic materials. CR Mech 338(1):3–11 es_ES
dc.description.references Maeda N, Fujikawa M, Makabe C, Yamabe J, Kodama Y, Koishi M (2015) Performance evaluation of various hyperelastic constitutive models of rubbers. In: Marvalova B, Petrikova I (eds) Constitutive models for rubbers IX. CRC Press, Boca Raton, pp 271–277 es_ES
dc.description.references Steinmann P, Hossain M, Possart G (2012) Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Arch Appl Mech 82:1183–1217 es_ES
dc.description.references Bechir H, Chevalier L, Chaouche M, Boufala K (2006) Hyperelastic constitutive model for rubber-like materials based on the first Seth strain measures invariant. Eur J Mech A Solid 25(1):110–124 es_ES
dc.description.references Gendy AS, Saleeb AF (2000) Nonlinear material parameter estimation for characterizing hyperelastic large strain models. Comput Mech 25(1):66–77 es_ES
dc.description.references Stumpf PT, Marczak RJ (2010) Optimization of constitutive parameters for hyperelastic models satisfying the Baker-Ericksen inequalities. In: Dvorkin E, Goldschmit M, Storti M (eds) Mecanica computational XXIX. Asociación Argentina de Mecánica Computacional, Buenos Aires, pp 2901–2916 es_ES
dc.description.references Bradley GL, Chang PC, McKenna GB (2001) Rubber modeling using uniaxial test data. J Appl Polym Sci 81(4):837–848 es_ES
dc.description.references Hariharaputhiran H, Saravanan U (2016) A new set of biaxial and uniaxial experiments on vulcanized rubber and attempts at modeling it using classical hyperelastic models. Mech Mater 92:211–222 es_ES
dc.description.references Mansouri MR, Darijani H (2014) Constitutive modelling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. Int J Solid Struct 51:4316–4326 es_ES
dc.description.references Moerman KM, Simms CK, Nagel T (2016) Control of tension-compression asymmetry in Ogden hyperelasticity with application to soft tissue modelling. J Mech Beh Biomed Mater 56:218–228 es_ES
dc.description.references Holzapfel GA (2006) Determination of material models for arterial walls from uniaxial extension tests and histological structure. J Theor Biol 238(2):290–302 es_ES
dc.description.references Li D, Robertson AM (2009) A structural multi-mechanism constitutive equation for cerebral arterial tissue. Int J Solid Struct 46:2920–2928 es_ES
dc.description.references Shearer T (2015) A new strain energy function for the hyperelastic modelling of ligaments and tendons based on fascicle microstructure. J Biomech 48(2):290–297 es_ES
dc.description.references Holzapfel GA, Niestrawska JA, Ogden RW, Reinisch AJ, Schriefl AJ (2015) Modelling non-symmetric collagen fiber dispersion in arterial walls. J R Soc Interface 12:20150188 es_ES
dc.description.references Itskov M, Aksel N (2004) A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int J Solid Struct 41(14):3833–3848 es_ES
dc.description.references Angeli S, Panayiotou C, Psimolophitis E, Nicolaou M, Constantinides C (2015) Uniaxial stress-strain characteristics of elastomeric membranes: theoretical considerations, computational simulations, and experimental validation. Mech Adv Mater Struct 22(12):996–1006 es_ES
dc.description.references Chen H, Zhao X, Lu X, Kassab GS (2016) Microstructure-based constitutive models for coronary artery adventitia. In: Kassab GS, Sacks MS (eds) Structure-based mechanics of tissues and organs. Springer, New York, pp 225–248 es_ES
dc.description.references Pierce DM, Maier F, Weisbecker H, Viertler C, Verbrugghe P, Famaey N, Holzapfel GA (2015) Human thoracic and abdominal aortic aneurysmal tissues: damage experiments, statistical analysis and constitutive modeling. J Mech Beh Biomed Mater 41:92–107 es_ES
dc.description.references Cooney GM, Moerman KM, Takaza M, Winter DC, Simms CK (2015) Uniaxial and biaxial mechanical properties of porcine linea alba. J Mech Beh Biomed Mater 41:68–82 es_ES
dc.description.references Santamaría VA, Siret O, Badel P, Guerin G, Novacek V, Turquier F, Avril S (2015) Material model calibration from planar tension tests on porcine linea alba. J Mech Beh Biomed Mater 43:26–34 es_ES
dc.description.references Sacks MS (2003) Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng 125(2):280–287 es_ES
dc.description.references Natali AN, Carniel EL, Pavan PG, Dario P, Izzo I (2006) Hyperelastic models for the analysis of soft tissue mechanics: definition of constitutive parameters. In: Biomedical Robotics and Biomechatronics, IEEE, pp 188–191 es_ES
dc.description.references Tricerri P, Dedè L, Gambaruto A, Quarteroni A, Sequeira A (2016) A numerical study of isotropic and anisotropic constitutive models with relevance to healthy and unhealthy cerebral arterial tissues. Int J Eng Sci 101:126–155 es_ES
dc.description.references Cortes DH, Elliott DM (2016) Modeling of collagenous tissues using distributed fiber orientations. In: Kassab GS, Sacks MS (eds) Structure-based mechanics of tissues and organs. Springer, New York, pp 15–40 es_ES
dc.description.references Gasser TC (2016) Histomechanical modeling of the wall of abdominal aortic aneurysm. In: Kassab GS, Sacks MS (eds) Structure-based mechanics of tissues and organs. Springer, New York, pp 57–78 es_ES
dc.description.references Kamenskiy AV, Pipinos II, Dzenis YA, Phillips NY, Desyatova AS, Kitson J, Bowen R, MacTaggart JN (2015) Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries. Acta Biomater 11:304–313 es_ES
dc.description.references Lee LC, Wenk J, Klepach D, Kassab GS, Guccione JM (2016) Structural-basedmodels of ventricular myocardium. In: Kassab GS, Sacks MS (eds) Structure-based mechanics of tissues and organs. Springer, New York, pp 249–264 es_ES
dc.description.references Fehervary H, Smoljkić M, Sloten JV, Famaey N (2016) Planar biaxial testing of soft biological tissue using rakes: a critical analysis of protocol and fitting process. J Mech Beh Biomed Mater 61:135–151 es_ES
dc.description.references Valanis KC, Landel RF (1967) The stored energy of a hyperelastic material in terms of the extension ratios. J Appl Phys 38:2997 es_ES
dc.description.references Sussman T, Bathe KJ (2009) A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data. Commun Num Meth Eng 25(1):53–63 es_ES
dc.description.references Kearsley EA, Zapas LJ (1980) Some methods of measurement of an elastic strain energy function of the valanis-landel type. J Rheol 24:483 es_ES
dc.description.references ADINA Theory and Modelling Guide (2012) ARD 12–8 (2012). ADINA R&D, Watertown es_ES
dc.description.references Latorre M, Montáns FJ (2013) Extension of the Sussman-Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comput Struct 122:13–26 es_ES
dc.description.references Latorre M, Montáns FJ (2014) What-you-prescribe-is-what-you-get orthotropic hyperelasticity. Comput Mech 53(6):1279–1298 es_ES
dc.description.references Latorre M, Montáns FJ (2014) On the interpretation of the logarithmic strain tensor in an arbitrary system of representation. Int J Solid Struct 51(7):1507–1515 es_ES
dc.description.references Fiala Z (2015) Discussion of “ On the interpretation of the logarithmic strain tensor in an arbitrary system of representation” by M. Latorre and F.J. Montáns. Int J Solid Struct 56—-57:290–291 es_ES
dc.description.references Latorre M, Montáns FJ (2015) Response to Fiala’s comments on “On the interpretation of the logarithmic strain tensor in an arbitrary system of representation”. Int J Solid Struct 56–57:292 es_ES
dc.description.references Neff P, Eidel B, Martin RJ (2015) Geometry of logarithmic strain measures in solid mechanics. arXiv:1505.02203 [MathDG] es_ES
dc.description.references Latorre M, Montáns FJ (2015) Anisotropic finite strain viscoelasticity based on the Sidoroff multiplicative decomposition and logarithmic strains. Comput Mech 56:503–531 es_ES
dc.description.references Latorre M, Montáns FJ (2016) Fully anisotropic finite strain viscoelasticity based on a reverse multiplicative decomposition and logarithmic strains. Comput Struct 163:56–70 es_ES
dc.description.references Miñano M, Montáns FJ (2015) A new approach to modeling isotropic damage for Mullins effect in hyperelastic materials. Int J Solid Struct 67–68:272–282 es_ES
dc.description.references Latorre M, De Rosa E, Montáns FJ (2016) Understanding the need of the compression branch to characterize hyperelastic materials. Under review es_ES
dc.description.references Latorre M, Romero X, Montáns FJ (2016) The relevance of transverse deformation effects in modeling soft biological tissues. Int J Solid Struct 99:57–70 es_ES
dc.description.references Romero X, Latorre M, Montáns FJ (2016) Determination of the WYPIWYG strain energy density of skin through finite element analysis of the experiments on circular specimens. Under review es_ES
dc.description.references Bower AF (2009) Applied mechanics of solids. CRC Press, Boca Ratón es_ES
dc.description.references Ogden RW (1972) Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. P R Soc London A Math 326(1567):565–584 es_ES
dc.description.references Ogden RW (1973) Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Ruber Chem Technol 46(2):398–416 es_ES
dc.description.references Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11:582–592 es_ES
dc.description.references Hartmann S, Neff P (2003) Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int J Solid Struct 40(11):2767–2791 es_ES
dc.description.references Gent AN (1996) A new constitutive relation for rubber. Rubber Chem Technol 69(1):59–61 es_ES
dc.description.references Blatz PJ, Ko WL (1962) Application of finite elastic theory to the deformation of rubbery materials. T Soc Rheol 6:223–251 es_ES
dc.description.references Latorre M, Montáns FJ (2015) Material-symmetries congruency in transversely isotropic and orthotropic hyperelastic materials. Eur J Mech A Solid 53:99–106 es_ES
dc.description.references Latorre M, Montáns FJ (2016) Stress and strain mapping tensors and general work-conjugacy in large strain continuum mechanics. Appl Math Model 40(5–6):3938–3950 es_ES
dc.description.references Dierckx P (1993) Curve and surface fitting with splines. Oxford University Press, Oxford es_ES
dc.description.references Eubank RL (1999) Nonparametric regression and spline smoothing. Marcel Dekker, New York es_ES
dc.description.references Weinert HL (2013) Fast compact algorithms and software for spline smoothing. Springer, New York es_ES
dc.description.references Latorre M, Montáns FJ (2017) WYPIWYG hyperelasticity: splines are fine and smoothing is soothing (forthcoming) es_ES
dc.description.references Caminero MA, Montáns FJ, Bathe KJ (2011) Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures. Comput Struct 89(11):826–843 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem