- -

A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Latorre, Marcos es_ES
dc.contributor.author Humphrey, Jay D. es_ES
dc.date.accessioned 2023-01-26T19:01:39Z
dc.date.available 2023-01-26T19:01:39Z
dc.date.issued 2018-12 es_ES
dc.identifier.issn 0044-2267 es_ES
dc.identifier.uri http://hdl.handle.net/10251/191470
dc.description.abstract [EN] Growth and remodeling of soft tissues is a dynamic process and several theoretical frameworks have been developed to analyze the time-dependent, mechanobiological and/or biomechanical responses of these tissues to changes in external loads. Importantly, general processes can often be conveniently separated into truly non-steady contributions and steady-state ones. Depending on characteristic times over which the external loads are applied, time-dependent models can sometimes be specialized to respective time-independent formulations that simplify the mathematical treatment without compromising the goodness of the particularized solutions. Very few studies have analyzed the long-term, steady-state responses of soft tissue growth and remodeling following a direct approach. Here, we derive a mechanobiologically equilibrated formulation that arises from a general constrained mixture model. We see that integral-type evolution equations that characterize these general models can be written in terms of an equivalent set of time-independent, nonlinear algebraic equations that can be solved efficiently to yield long-term outcomes of growth and remodeling processes in response to sustained external stimuli. We discuss the mathematical conditions, in terms of orders of magnitude, that yield the particularized equations and illustrate results numerically for general arterial mechano-adaptations. es_ES
dc.description.sponsorship Universidad Politecnica de Madrid; Ministerio de Educacion, Cultura y Deporte of Spain, Grant/Award Number: CAS17/00068; Ministerio de Economia y Competitividad of Spain, Grant/Award Number: DPI2015-69801-R; National Institutes of Health, Grant/Award Numbers: R01HL086418, R01HL105297, R01HL128602, U01HL116323 es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Adaptation es_ES
dc.subject Arteries es_ES
dc.subject Long-term response es_ES
dc.subject Mechanobiological equilibrium es_ES
dc.subject Stress es_ES
dc.title A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/zamm.201700302 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-69801-R/ES/MODELADO Y SIMULACION DEL COMPORTAMIENTO MECANICO DE MATERIALES BLANDOS ANISOTROPOS EN GRANDES DEFORMACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//CAS17%2F00068//Estancias de movilidad en el extranjero «José Castillejo» para jóvenes doctores/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-69801-R//Modelado y simulación del comportamiento mecánico de materiales blandos anisótropos en grandes deformaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01 HL086418//Biomechanical Simulation of Evolving Aortic Aneurysms for Designing Intervention/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//U01 HL116323//Multiscale, Multiphysics Model of Thrombus Biomechanics in Aortic Dissection/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01 HL105297//Mechanisms Underlying the Progression of Arterial Stiffness in Hypertension/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01 HL128602//Computational Model Driven Design of Tissue Engineered Vascular Grafts/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Latorre, M.; Humphrey, JD. (2018). A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues. Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 98(12):2048-2071. https://doi.org/10.1002/zamm.201700302 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/zamm.201700302 es_ES
dc.description.upvformatpinicio 2048 es_ES
dc.description.upvformatpfin 2071 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 98 es_ES
dc.description.issue 12 es_ES
dc.identifier.pmid 30618468 es_ES
dc.identifier.pmcid PMC6319907 es_ES
dc.relation.pasarela S\472084 es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem