- -

Improved Tafel-Based Potentiostatic Approach for Corrosion Rate Monitoring of Reinforcing Steel

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improved Tafel-Based Potentiostatic Approach for Corrosion Rate Monitoring of Reinforcing Steel

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramón, José Enrique es_ES
dc.contributor.author Martínez, Isabel es_ES
dc.contributor.author Gandía-Romero, Jose M. es_ES
dc.contributor.author Soto Camino, Juan es_ES
dc.date.accessioned 2023-02-21T19:02:06Z
dc.date.available 2023-02-21T19:02:06Z
dc.date.issued 2022-12 es_ES
dc.identifier.issn 0195-9298 es_ES
dc.identifier.uri http://hdl.handle.net/10251/191982
dc.description.abstract [EN] Potential step voltammetry (PSV) was introduced in earlier works as an advantageous alternative to traditional methods for measuring corrosion rate in reinforced concrete. The present study aims to improve PSV to maximize its applicability in corrosion rate monitoring, that is, beyond the narrowly-defined steel¿concrete systems in which was initially validated. It was therefore identified necessary to address the most suitable PSV pulse amplitudes to accurately obtain the Tafel lines and, therefore, corrosion rate in steel-mortar systems with well-differentiated ohmic drop. PSV findings were compared to reference methods, i.e. Tafel intersection and linear polarization resistance. As a novelty, we propose a procedure to improve the reliability of the PSV-determined Tafel lines, which is based on three protocols (P1, P2 and P3). P1 consists of a specific pulse sequence to accurately characterize the morphology of the polarization curve without disturbing the system. P2 consists of two short pulses for determining the ohmic drop compensation factor. Finally, P3 consists of a simple calculation procedure to accurately adjust the PSV pulse amplitudes (V) to the steel¿concrete system assessed, thus obviating the need for preset values and, therefore, ensuring accurate corrosion rate results. The procedure proposed is intended to improve PSV with a view to its consolidation as a reliable tool for the unsupervised monitoring of real structures. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by the pre-doctoral scholarship granted to Jose Enrique Ramon Zamora by the Spanish Ministry of Science and Innovation (Grant Number FPU13/00911). We would also like to acknowledge financial support from the Spanish Ministry of Science and Innovation through the national programs of oriented research, development and innovation to societal challenges (Project Numbers BIA2016-78460-C33-R, PID2020-119744RB-C21 and PID2020-119744RB-C22). To the Universitat Politecnica de Valencia for the financial support in the project "Ayudas a Primeros Proyectos de Investigacion (PAID-0618)"-SP20180245. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Nondestructive Evaluation es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Non-destructive technique es_ES
dc.subject Ohmic drop es_ES
dc.subject Potential step voltammetry es_ES
dc.subject Reinforced concrete es_ES
dc.subject Steel corrosion es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.title Improved Tafel-Based Potentiostatic Approach for Corrosion Rate Monitoring of Reinforcing Steel es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10921-022-00903-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119744RB-C21/ES/MONITORIZACION INTELIGENTE PARA REDUCIR LA INCERTIDUMBRE EN LA VIDA UTIL: SENSORES DE CORROSION POTENCIOSTATICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV-VIN//SP20180245//Lengua Electrónica Voltamétrica para el control de durabilidad en hormigones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119744RB-C22/ES/MONITOREO INTELIGENTE PARA REDUCIR INCERTIDUMBRES EN LA PREDICCION DE LA VIDA UTIL: SENSORES DE CORROSION BASADOS EN SISTEMAS DE CONTROL DE CORRIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F00911/ES/FPU13%2F00911/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180245/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F00911//FPU13/00911/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2016-78460-C3-3-R//Durabilidad y vida útil del hormigón de muy alto rendimiento/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Gestión en la Edificación - Escola Tècnica Superior de Gestió en l'Edificació es_ES
dc.description.bibliographicCitation Ramón, JE.; Martínez, I.; Gandía-Romero, JM.; Soto Camino, J. (2022). Improved Tafel-Based Potentiostatic Approach for Corrosion Rate Monitoring of Reinforcing Steel. Journal of Nondestructive Evaluation. 41:1-25. https://doi.org/10.1007/s10921-022-00903-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10921-022-00903-z es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 41 es_ES
dc.relation.pasarela S\473227 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Papavinasam, S.: Electrochemical polarization techniques for corrosion monitoring. In: Yang, L. (ed.) Techniques for Corrosion Monitoring, pp. 45–77. Woodhead Publishing, Sawston (2021). https://doi.org/10.1016/B978-0-08-103003-5.00003-5 es_ES
dc.description.references Chang, Z.T., Cherry, B., Marosszeky, M.: Polarisation behaviour of steel bar samples in concrete in seawater. Part 1: experimental measurement of polarisation curves of steel in concrete. Corros. Sci. 50, 357–364 (2008). https://doi.org/10.1016/j.corsci.2007.08.009 es_ES
dc.description.references Martínez, I., Andrade, C.: Examples of reinforcement corrosion monitoring by embedded sensors in concrete structures. Cem. Concr. Compos. 31, 545–554 (2009). https://doi.org/10.1016/j.cemconcomp.2009.05.007 es_ES
dc.description.references Andrade, C., Martínez, I.: Techniques for measuring the corrosion rate (polarization resistance) and the corrosion potential of reinforced concrete structures. In: Maierhofer, C., Reinhardt, H.W., Dobmann, G. (eds.) Non-Destructive Evaluation of Reinforced Concrete Structures, vol. 2, pp. 284–316. Woodhead Publishing, Sawston (2010). https://doi.org/10.1016/j.cemconcomp.2009.05.007 es_ES
dc.description.references Martínez, I., Andrade, C.: Polarization resistance measurements of bars embedded in concrete with different chloride concentrations: EIS and DC comparison. Mater. Corros. 62, 932–942 (2011). https://doi.org/10.1002/maco.200905596 es_ES
dc.description.references Stern, M., Geary, A.L.: Electrochemical polarization. I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. 104, 56–63 (1957). https://doi.org/10.1149/1.2428496 es_ES
dc.description.references González, J.A., Albéniz, J., Feliu, S.: Valores de la constante B del método de resistencia de polarización para veinte sistemas metal-medio diferentes. Rev. Met. 32, 10–17 (1996). https://doi.org/10.3989/revmetalm.1996.v32.i1.926 es_ES
dc.description.references UNE 112072:2011 Spanish Standard, Laboratory Measurement of Corrosion Speed Using the Polarization Resistance Technique (2011) es_ES
dc.description.references Andrade, C., Alonso, C.: Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mater. Struct. 37, 623–643 (2004). https://doi.org/10.1007/BF02483292 es_ES
dc.description.references Andrade, C., Martínez, I., Alonso, C., Fullea, J.: New advanced electrochemical techniques for on site measurements of reinforcement corrosion. Mater. Constr. 51, 97–107 (2001). https://doi.org/10.3989/mc.2001.v51.i263-264.356 es_ES
dc.description.references Scully, J.R.: Polarization resistance method for determination of instantaneous corrosion rates. Corrosion 56, 199–218 (2000). https://doi.org/10.5006/1.3280536 es_ES
dc.description.references Glass, G.K., Page, C.L., Short, N.R., Yu, S.W.: An investigation of galvanostatic transient methods used to monitor the corrosion rate of steel in concrete. Corros. Sci. 35, 1585–1592 (1993). https://doi.org/10.1016/0010-938X(93)90388-W es_ES
dc.description.references Elsener, B., Wojtas, H., Böhni, H. Galvanostatic pulse measurements-rapid on site corrosion monitoring in Corrosion and corrosion protection of steel in concrete. In: Proceedings of International conference held at the University of Sheffield, 24–28 July 1994, vol. 1 (1994) es_ES
dc.description.references Walter, G.W.: Problems arising in the determination of accurate corrosion rates from polarization resistance measurements. Corros. Sci. 17, 983–993 (1977). https://doi.org/10.1016/S0010-938X(77)80013-9 es_ES
dc.description.references Law, D.W., Millard, S.G., Bungey, J.H.: Galvanostatic pulse measurements of passive and active reinforcing steel in concrete. Corrosion 56, 48–56 (2000). https://doi.org/10.5006/1.3280522 es_ES
dc.description.references Frølund, T., Jensen, M.F., Bassler, R. Determination of reinforcement corrosion rate by means of the galvanostatic pulse technique. In: First International Conference on Bridge Maintenance, Safety and Management IABMAS. Barcelona (Spain), 14–17 July, 2002 (2002) es_ES
dc.description.references Vedalakshmi, R., Balamurugan, L., Saraswathy, V., Kim, S.H., Ann, K.Y.: Reliability of galvanostatic pulse technique in assessing the corrosion rate of rebar in concrete structures: laboratory vs field studies. KSCE J. Civ. Eng. 14, 867–877 (2010). https://doi.org/10.1007/s12205-010-1023-6 es_ES
dc.description.references Xu, J., Yao, W.: Detecting the efficiency of cathodic protection in reinforced concrete by use of Galvanostatic pulse technique. In: Bao, Y., Tian, L., Gong, J. (eds.) Advanced Materials Research, vol. 177, pp. 584–589. Trans Tech Publications Ltd, Bäch (2011). https://doi.org/10.4028/www.scientific.net/AMR.177.584 es_ES
dc.description.references Dou, Y.T., Hao, B.H., Meng, B., Xie, J., Dong, M.L., Zhang, A.L.: The study to the corrosion of reinforcing steel in concrete by using Galvanostatic Pulse Technique. Appl. Mech. Mater. 501, 916–919 (2014). https://doi.org/10.4028/www.scientific.net/AMM.501-504.916 es_ES
dc.description.references Feliu, V., Gonzalez, J.A., Feliu, S.: Corrosion estimates from the transient response to a potential step. Corros. Sci. 49, 3241–3255 (2007). https://doi.org/10.1016/j.corsci.2007.03.004 es_ES
dc.description.references Elsener, B., Klinghoffer, O., Frolund, T., Rislund, E., Schiegg, Y., Bohni, H.: Assessment of reinforcement corrosion by means of galvanostatic pulse technique. In: Blankvoll, A. (ed) Proceeding of the International Conference on Repair of Concrete Structures, Norwegian Public Roads Administration, Svolvaer, Norway, pp. 391–400 (1997) es_ES
dc.description.references Glass, G.K., Page, C.L., Short, N.R., Zhang, J.Z.: The analysis of potentiostatic transients applied to the corrosion of steel in concrete. Corros. Sci. 39, 1657–1663 (1997). https://doi.org/10.1016/S0010-938X(97)00071-1 es_ES
dc.description.references Andrade, C., Soler, L., Alonso, C., Novoa, X.R., Keddam, M.: The importance of geometrical considerations in the measurement of steel corrosion in concrete by means of AC impedance. Corros. Sci. 37, 2013–2023 (1995). https://doi.org/10.1016/0010-938X(95)00095-2 es_ES
dc.description.references Newton, C.J., Sykes, J.M.: A galvanostatic pulse technique for investigation of steel corrosion in concrete. Corros. Sci. 28, 1051–1074 (1988). https://doi.org/10.1016/0010-938X(88)90101-1 es_ES
dc.description.references Jin, M., Ma, Y., Zeng, H., Liu, J., Jiang, L., Yang, G., Gu, Y.: Developing a multi-element sensor to non-destructively monitor several fundamental parameters related to concrete durability. Sensors 20, 5607 (2020). https://doi.org/10.3390/s20195607 es_ES
dc.description.references Rybalka, K.V., Beketaeva, L.A., Davydov, A.D.: Estimation of corrosion current by the analysis of polarization curves: electrochemical kinetics mode. Russ. J. Electrochem. 50, 108–113 (2014). https://doi.org/10.1134/S1023193514020025 es_ES
dc.description.references Barnartt, S.: Two-point and three-point methods for the investigation of electrode reaction mechanisms. Electrochim. Acta 15, 1313–1324 (1970). https://doi.org/10.1016/0013-4686(70)80051-2 es_ES
dc.description.references Beleevskii, V.S., Kudelin, Y.I.: Calculation of corrosion rate and Tafel constants from two or three values of polarization current of the same sign near corrosion potential. Zashch Met. 25, 80–85 (1989) es_ES
dc.description.references Jankowski, J., Juchniewicz, R.: A four-point method for corrosion rate determination. Corros. Sci. 20, 841–851 (1980). https://doi.org/10.1016/0010-938X(80)90118-3 es_ES
dc.description.references Rocchini, G.: The determination of tafel slopes by the successive approximation method. Corros. Sci. 37, 987–1003 (1995). https://doi.org/10.1016/0010-938X(95)00009-9 es_ES
dc.description.references Mansfeld, F.: Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corros. Sci. 47, 3178–3186 (2005). https://doi.org/10.1016/j.corsci.2005.04.012 es_ES
dc.description.references Beleevskii, V.S., Konev, K.A., Novosadov, V.V., Vasil’ev, V.Y.: Estimating corrosion current and tafel constants from the curvature of voltammetric curves near the free-corrosion potential. Prot. Met. 40, 566–569 (2004). https://doi.org/10.1023/B:PROM.0000049521.65336.25 es_ES
dc.description.references Lakshminarayanan, V., Rajagopalan, S.R.: Applications of exponential relaxation methods for corrosion studies and corrosion rate measurement. In: Proceedings of the Indian Academy of Sciences-Chemical Sciences, pp. 465–477. Springer (1986) es_ES
dc.description.references Gao, J., Wu, J., Li, J., Zhao, X.: Monitoring of corrosion in reinforced concrete structure using Bragg grating sensing. Ndt E Int. 44, 202–205 (2011). https://doi.org/10.1016/j.ndteint.2010.11.011 es_ES
dc.description.references Fan, L., Bao, Y., Meng, W., Chen, G.: In-situ monitoring of corrosion-induced expansion and mass loss of steel bar in steel fiber reinforced concrete using a distributed fiber optic sensor. Compos. Part B: Eng. 165, 679–689 (2019). https://doi.org/10.1016/j.compositesb.2019.02.051 es_ES
dc.description.references Andringa, M.M., Neikirk, D.P., Dickerson, N.P., Wood, S.L.: Unpowered wireless corrosion sensor for steel reinforced concrete. In: SENSORS, 2005 IEEE, p. 4. IEEE (2005). https://doi.org/10.1109/ICSENS.2005.1597659 es_ES
dc.description.references Degala, S., Rizzo, P., Ramanathan, K., Harries, K.A.: Acoustic emission monitoring of CFRP reinforced concrete slabs. Constr. Build Mater. 23, 2016–2026 (2009). https://doi.org/10.1016/j.conbuildmat.2008.08.026 es_ES
dc.description.references Mustapha, S., Lu, Y., Li, J., Ye, L.: Damage detection in rebar-reinforced concrete beams based on time reversal of guided waves. Struct. Health Monit. 13, 347–358 (2014). https://doi.org/10.1177/1475921714521268 es_ES
dc.description.references Ramón, J.E., Gandía-Romero, J.M., Bataller, R., Alcañiz, M., Valcuende, M., Soto, J.: Potential step voltammetry: an approach to corrosion rate measurement of reinforcements in concrete. Cem. Concr. Compos. 110, 103590 (2020). https://doi.org/10.1016/j.cemconcomp.2020.103590 es_ES
dc.description.references Ramón, J.E.: Sistema de Sensores Embebidos para Monitorizar la Corrosión en Estructuras de Hormigón Armado. Fundamentos, Metodología y Aplicaciones, Ph.D. Thesis, Universitat Politècnica de València, València (Spain) (2018). https://doi.org/10.4995/Thesis/10251/111823 es_ES
dc.description.references Ramón, J.E., Martínez-Ibernón, A., Gandía-Romero, J.M., Fraile, R., Bataller, R., Alcañiz, M., García-Breijo, E., Soto, J.: Characterization of electrochemical systems using potential step voltammetry. Part I: Modeling by means of equivalent circuits. Electrochim. Acta 323, 134702 (2019). https://doi.org/10.1016/j.electacta.2019.134702 es_ES
dc.description.references Martínez-Ibernón, A., Ramón, J.E., Gandía-Romero, J.M., Gasch, I., Valcuende, M., Alcañiz, M., Soto, J.: Characterization of electrochemical systems using potential step voltammetry. Part II: Modeling of reversible systems. Electrochim. Acta 328, 135111 (2019). https://doi.org/10.1016/j.electacta.2019.135111 es_ES
dc.description.references Moreno, M., Morris, W., Alvarez, M.G., Duffó, G.S.: Corrosion of reinforcing steel in simulated concrete pore solutions: effect of carbonation and chloride content. Corros. Sci. 46, 2681–2699 (2004). https://doi.org/10.1016/j.corsci.2004.03.013 es_ES
dc.description.references Chang, Z.T., Cherry, B., Marosszeky, M.: Polarisation behaviour of steel bar samples in concrete in seawater. Part 2: a polarisation model for corrosion evaluation of steel in concrete. Corros. Sci. 50, 3078–3086 (2008). https://doi.org/10.1016/j.corsci.2008.08.021 es_ES
dc.description.references Alcañiz, M., Bataller, R., Gandía-Romero, J.M., Ramón, J.E., Soto, J., Valcuende, M.: Sensor, red de sensores, método y programa informático para determinar la corrosión en una estructura de hormigón armado, invention patent No. ES2545669, Publication date 19 January 2016. es_ES
dc.description.references Feliu, S., González, J.A., Miranda, J.M., Feliu, V.: Possibilities and problems of in situ techniques for measuring steel corrosion rates in large reinforced concrete structures. Corros. Sci. 47, 217–238 (2005). https://doi.org/10.1016/j.corsci.2004.04.011 es_ES
dc.description.references Feliu, S., Gonzalez, J.A., Andrade, C., Feliu, V.: The determination of the corrosion rate of steel in concrete by a non-stationary method. Corros. Sci. 26, 961–970 (1986). https://doi.org/10.1016/0010-938X(86)90086-7 es_ES
dc.description.references Sagüés, A.A., Kranc, S.C., Moreno, E.I.: Evaluation of electrochemical impedance with constant phase angle component from the galvanostatic step response of steel in concrete. Electrochim. Acta 41, 1239–1243 (1996). https://doi.org/10.1016/0013-4686(95)00476-9 es_ES
dc.description.references Sagüés, A.A., Kranc, S.C., Moreno, E.I.: An improved method for estimating polarization resistance from small-amplitude potentiodynamic scans in concrete. Corrosion 54, 20–28 (1998). https://doi.org/10.5006/1.3284824 es_ES
dc.description.references Gonzalez, J.A., Miranda, J.M., Birbilis, N., Feliu, S.: Electrochemical techniques for studying corrosion of reinforcing steel: Limitations and advantages. Corrosion 61, 37–50 (2005). https://doi.org/10.5006/1.3278158 es_ES
dc.description.references Bastidas, D.M., González, J.A., Feliu, S., Cobo, A., Miranda, J.M.: A quantitative study of concrete-embedded steel corrosion using potentiostatic pulses. Corrosion 63, 1094–1100 (2007). https://doi.org/10.5006/1.3278327 es_ES
dc.description.references Hornbostel, K., Larsen, C.K., Geiker, M.R.: Relationship between concrete resistivity and corrosion rate–A literature review. Cem. Concr. Compos. 39, 60–72 (2013). https://doi.org/10.1016/j.cemconcomp.2013.03.019 es_ES
dc.description.references Qian, S., Zhang, J., Qu, D.: Theoretical and experimental study of microcell and macrocell corrosion in patch repairs of concrete structures. Cem. Concr. Compos. 28, 685–695 (2006). https://doi.org/10.1016/j.cemconcomp.2006.05.010 es_ES
dc.description.references Ramón, J.E., Martínez, I., Gandía-Romero, J.M., Soto, J.: An embedded-sensor approach for concrete resistivity measurement in on-site corrosion monitoring: cell constants determination. Sensors 21, 2481 (2021). https://doi.org/10.3390/s21072481 es_ES
dc.description.references ASTM G59–97: Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. ASTM International, West Conshohocken, PA (2020). http://www.astm.org/cgi-bin/resolver.cgi?G59. Accessed 8 Feb 2022. es_ES
dc.description.references Poursaee, A.: Determining the appropriate scan rate to perform cyclic polarization test on the steel bars in concrete. Electrochim Acta 55, 1200–1206 (2010). https://doi.org/10.1016/j.electacta.2009.10.004 es_ES
dc.description.references ASTM G5–14e1: Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements. ASTM International, West Conshohocken, PA (2014). http://www.astm.org/cgi-bin/resolver.cgi?G5. Accessed 8 Feb 2022. es_ES
dc.description.references Jerkiewicz, G., Vatankhah, G., Lessard, J., Soriaga, M.P., Park, Y.S.: Surface-oxide growth at platinum electrodes in aqueous H2SO4: reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements. Electrochim. Acta 49, 1451–1459 (2004). https://doi.org/10.1016/j.electacta.2003.11.008 es_ES
dc.description.references Cherevko, S., Topalov, A.A., Zeradjanin, A.R., Katsounaros, I., Mayrhofer, K.J.J.: Gold dissolution: towards understanding of noble metal corrosion. Rsc Adv. 3, 16516–16527 (2013). https://doi.org/10.1039/C3RA42684J es_ES
dc.description.references Joiret, S., Keddam, M., Novoa, X.R., Perez, M.C., Rangel, C., Takenouti, H.: Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH. Cem. Concr. Compos. 24, 7–15 (2002). https://doi.org/10.1016/S0958-9465(01)00022-1 es_ES
dc.description.references Sánchez, M., Gregori, J., Alonso, C., García-Jareño, J.J., Takenouti, H., Vicente, F.: Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores. Electrochim. Acta 52, 7634–7641 (2007). https://doi.org/10.1016/j.electacta.2007.02.012 es_ES
dc.description.references Liu, X., MacDonald, D.D., Wang, M., Xu, Y.: Effect of dissolved oxygen, temperature, and pH on polarization behavior of carbon steel in simulated concrete pore solution. Electrochim. Acta 366, 137437 (2021). https://doi.org/10.1016/j.electacta.2020.137437 es_ES
dc.description.references Byfors, K.: Influence of silica fume and flyash on chloride diffusion and pH values in cement paste. Cem. Concr. Res. 17, 115–130 (1987). https://doi.org/10.1016/0008-8846(87)90066-4 es_ES
dc.description.references Osmanovic, Z., Haračić, N., Zelić, J.: Properties of blastfurnace cements (CEM III/A, B, C) based on Portland cement clinker, blastfurnace slag and cement kiln dusts. Cem. Concr. Compos. 91, 189–197 (2018). https://doi.org/10.1016/j.cemconcomp.2018.05.006 es_ES
dc.description.references Andrade, C., Keddam, M., Nóvoa, X.R., Pérez, M.C., Rangel, C.M., Takenouti, H.: Electrochemical behaviour of steel rebars in concrete: influence of environmental factors and cement chemistry. Electrochim. Acta 46, 3905–3912 (2001). https://doi.org/10.1016/S0013-4686(01)00678-8 es_ES
dc.description.references Wang, Y., Liu, C., Wang, Y., Li, Q., Yan, B.: Semi-empirical prediction model of chloride-induced corrosion rate in uncracked reinforced concrete exposed to a marine environment. Electrochim. Acta 331, 135376 (2020). https://doi.org/10.1016/j.electacta.2019.135376 es_ES
dc.description.references Vetter, K.J., Schultze, J.W.: The kinetics of the electrochemical formation and reduction of monomolecular oxide layers on platinum in 0.5 M H2SO4: Part II. Galvanostatic pulse measurements and the model of oxide growth. J. Electroanal. Chem. Interfacial Electrochem. 34, 141–158 (1972). https://doi.org/10.1016/S0022-0728(72)80510-2 es_ES
dc.description.references ASTM C876 − 15, Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. West Conshohocken, PA (2015). es_ES
dc.description.references Angst, U., Elsener, B., Larsen, C.K., Vennesland, Ø.: Chloride induced reinforcement corrosion: rate limiting step of early pitting corrosion. Electrochim. Acta 56, 5877–5889 (2011). https://doi.org/10.1016/j.electacta.2011.04.124 es_ES
dc.description.references Koga, G.Y., Albert, B., Roche, V., Nogueira, R.P.: A comparative study of mild steel passivation embedded in Belite-Ye’elimite-Ferrite and Porland cement mortars. Electrochim. Acta 261, 66–77 (2018). https://doi.org/10.1016/j.electacta.2017.12.128 es_ES
dc.description.references Ha, T.H., Muralidharan, S., Bae, J.H., Ha, Y.C., Lee, H.G., Park, K.W., Kim, D.K.: Effect of unburnt carbon on the corrosion performance of fly ash cement mortar. Constr. Build. Mater. 19, 509–515 (2005). https://doi.org/10.1016/j.conbuildmat.2005.01.005 es_ES
dc.description.references Nguyen, Q.D., Castel, A.: Reinforcement corrosion in limestone flash calcined clay cement-based concrete. Cem. Concr. Res. 132, 106051 (2020). https://doi.org/10.1016/j.cemconres.2020.106051 es_ES
dc.description.references Poursaee, A.: Potentiostatic transient technique, a simple approach to estimate the corrosion current density and Stern-Geary constant of reinforcing steel in concrete. Cem. Concr. Res. 40, 1451–1458 (2010). https://doi.org/10.1016/j.cemconres.2010.04.006 es_ES
dc.description.references Vedalakshmi, R., Thangavel, K.: Reliability of electrochemical techniques to predict the corrosion rate of steel in concrete structures. Arab. J. Sci. Eng. 36, 769–783 (2011). https://doi.org/10.1007/s13369-011-0082-4 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem